Loading…
Exercise in ozone-polluted air evokes pathological cardiac hypertrophy via up-regulation of nuclear lncRNA EYA4-au1 and recruiting Med11 to activating EYA4/p27kip1/CK2α/HDAC2 cascade
Engaging in exercise in an ozone (O3)-polluted environment can lead to lung damage, respiratory inflammation, and deterioration in performance, however, the effects on the heart are undefined. Herein, we report that rats performing moderate-intensity exercise under O3-polluted air evoked pathologica...
Saved in:
Published in: | Ecotoxicology and environmental safety 2024-11, Vol.287, p.117264, Article 117264 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Engaging in exercise in an ozone (O3)-polluted environment can lead to lung damage, respiratory inflammation, and deterioration in performance, however, the effects on the heart are undefined. Herein, we report that rats performing moderate-intensity exercise under O3-polluted air evoked pathological myocardial hypertrophy (MH). O3 exposure increased serum levels of MH-promoting factors (angiotensin II [AngII], endothelin-1 [ET-1], and cyclophilin A [CyPA]), and decreased expression of MH-inhibiting factors (adiponectin [ADPN], follistatin-like protein 1 [FSTL1], and apelin). O3 exposure also increased the expression levels of cardiac hypertrophy markers (ANP, BNP, and β-MHC) in the heart, elicited myocardial hypertrophy and cardiac inflammation. Mechanistically, we identified lncRNA EYA4-au1 overexpression in the above myocardial tissues with pathological hypertrophy. In an AngII-elicited in vitro model, EYA4-au1 was shown to mediate cardiomyocyte hypertrophy. AngII induces nuclear translocation of SP1, leading to high expression of EYA4-au1; And inhibits the expression of ELAVL1, resulting in nuclear retention of EYA4-au1. Nuclear EYA4-au1 recruits Med11 to EYA4 promoter for transcriptional activation, subsequently unleashing the EYA4/p27kip1/CK2α/HDAC2 cascade that signals cardiomyocyte hypertrophy. In summary, O3 exposure is an important factor in pathological MH, mediated by EYA4-au1 that motivates the MH-driving EYA4 pathway. Our findings define the effects of exercise on the heart in an O3-polluted environment and offer a novel mechanistic route for the onset of MH.
[Display omitted]
•Exercise in ozone-polluted air elicited myocardial hypertrophy and cardiac inflammationinduced in rats.•Regular exercise can partially reverse intermittent ozone induced myocardial hypertrophy.•lncRNA EYA4-au1 is a novel lncRNA that promotes myocardial hypertrophy.•SP1 and ELAVL1 can induce EYA4-au1 nuclear retention.•EYA4-au1 activates the p27kip1/CK2 α/HDAC2 axis by acting on neighboring gene EYA4. |
---|---|
ISSN: | 0147-6513 1090-2414 1090-2414 |
DOI: | 10.1016/j.ecoenv.2024.117264 |