Loading…

A prototype RFID tag for detecting bumblebee visitations within fragmented landscapes

Detecting the arbitrary movements of fast-moving insects under field conditions is notoriously difficult because existing technologies are limited by issues of size, weight, range and cost. Here, we establish proof-of-concept for a prototype long-range, passive radio frequency identification (RFID)...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biological engineering 2019-02, Vol.13 (1), p.13-13, Article 13
Main Authors: Barlow, Sarah E, O'Neill, Mark A, Pavlik, Bruce M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Detecting the arbitrary movements of fast-moving insects under field conditions is notoriously difficult because existing technologies are limited by issues of size, weight, range and cost. Here, we establish proof-of-concept for a prototype long-range, passive radio frequency identification (RFID) tagging system for detecting bumblebees and similar sized insects. The prototype tags, weighing 81 mg (49% of mean bee body weight), were flown by bumblebees in a glasshouse and detected at a distance of 1.5 m from a 2 W UHF reader with two aerials. This detection distance is two orders of magnitude greater than existing RFID tags that can be flown by medium-sized bees and, thus, is a significant breakthrough for insect tracking that could be applied to plant conservation and restoration efforts in fragmented landscapes. Proof-of-concept has been successfully established and, with further development, we are likely to optimize the system by reducing tag size and weight to limit effects on bee behaviour, and by increasing the detection distance. We envisage the production system being used to detect and track bee movement pathways within a designed network of field-deployed low-cost readers and aerials. The production system could be used in a wide variety of scientific and commercial applications.
ISSN:1754-1611
1754-1611
DOI:10.1186/s13036-019-0143-x