Loading…
An air quality index prediction model based on CNN-ILSTM
Air quality index (AQI) is an essential measure of air pollution evaluation, which describes the air pollution degree and its impact on health, so the accurate prediction of AQI is significant. This paper presents an AQI prediction model based on Convolution Neural Networks (CNN) and Improved Long S...
Saved in:
Published in: | Scientific reports 2022-05, Vol.12 (1), p.8373-8373, Article 8373 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Air quality index (AQI) is an essential measure of air pollution evaluation, which describes the air pollution degree and its impact on health, so the accurate prediction of AQI is significant. This paper presents an AQI prediction model based on Convolution Neural Networks (CNN) and Improved Long Short-Term Memory (ILSTM), named CNN-ILSTM. ILSTM deletes the output gate in LSTM and improves its input gate and forget gate, and introduces a Conversion Information Module (CIM) to prevent supersaturation in the learning process. ILSTM realizes efficient learning of historical data, improves prediction accuracy, and reduces the training time. CNN extracts the eigenvalues of input data effectively. This paper uses air quality data from 00:00 on January 1, 2017, to 23:00 on June 30, 2021, in Shijiazhuang City, Hebei Province, China, as experimental data sets, and compares this model with eight prediction models: SVR, RFR, MLP, LSTM, GRU, ILSTM, CNN-LSTM, and CNN-GRU to prove the validity and accuracy of CNN-ILSTM prediction model. The experimental results show the MAE of CNN-ILSTM is 8.4134, MSE is 202.1923, R
2
is 0.9601, and the training time is 85.3 s. In this experiment, the performance of this model performs better than other models. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-12355-6 |