Loading…

Experimental Investigation on Deformation Characteristics of Strutted U-Shape Sheet Pile Flexible Retaining Structures in Excavations Using 3D Printing

U-shape steel sheet piles are widely used in deep and large excavation engineering due to their excellent soil-retaining and water-stopping performances. To achieve deformation control in excavations, an experimental investigation on the deformation characteristics of a strutted U-shape sheet pile f...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-07, Vol.13 (14), p.8163
Main Authors: Huang, Jie, Yang, Zeping, Lin, Qinyue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:U-shape steel sheet piles are widely used in deep and large excavation engineering due to their excellent soil-retaining and water-stopping performances. To achieve deformation control in excavations, an experimental investigation on the deformation characteristics of a strutted U-shape sheet pile flexible retaining structure was conducted. Single-layer and double-layer strutted retaining structure excavation indoor model tests in sand, where U-shape sheet piles were formed by 3D printing, were successfully accomplished. Deformation was monitored in real time during the test. The results show that the lateral displacement mode of the retaining structure transformed with the change in excavation from the “cantilever” to the “bulge” and finally developed into an intricate “recurve bow”. The average maximum lateral displacement was 0.756% of the excavation depth. With a maximum settlement of 0.375% of the excavation depth on average, the distribution of ground settlement behind walls changed from “exponential” to “triangular” before ultimately transforming into “trough” or “trapezoid” mode. The maximum settlement to maximum lateral displacement ratio (smax/δmax) on average was 0.54; the maximum settlement deformation rate was always less than the maximum lateral displacement deformation rate.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13148163