Loading…
NOE distance and dihedral angle restraints to calculate the solution structure of the NDH-1 complex subunit CupS from Thermosynechococcus elongatus
Here, we have compiled a nuclear magnetic resonance (NMR)-derived set of nuclear Overhauser enhancement (NOE) distance and dihedral angle restraints that allow for the calculation of the structure of the NDH-1 complex subunit CupS from Thermosynechococcus elongatus in solution. These restraints to c...
Saved in:
Published in: | Data in brief 2016-03, Vol.6, p.249-252 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here, we have compiled a nuclear magnetic resonance (NMR)-derived set of nuclear Overhauser enhancement (NOE) distance and dihedral angle restraints that allow for the calculation of the structure of the NDH-1 complex subunit CupS from Thermosynechococcus elongatus in solution. These restraints to calculate the structure in solution of CupS have been deposited to the Protein Data Bank (www.rcsb.org) under PDB-ID accession number 2MXA. This is the first experimental data set published to compute the three-dimensional structure of CupS. This structure is presented in the research article “Solution structure of the NDH-1 complex subunit CupS from Thermosynechococcus elongatus” published by Korste et al. in Biochim. Biophys. Acta 1847(2015)1212–1219 [1]. The cyanobacterial multi-subunit membrane protein complex NDH-1 structurally and functionally relates to Complex I of eubacteria and mitochondria. The NDH-1 complex is mechanistically involved in respiration and cyclic electron transfer around photosystem I (PSI) as well as in a unique mechanism for inorganic carbon concentration. |
---|---|
ISSN: | 2352-3409 2352-3409 |
DOI: | 10.1016/j.dib.2015.12.004 |