Loading…
Droplet digital PCR allows vector copy number assessment and monitoring of experimental CAR T cells in murine xenograft models or approved CD19 CAR T cell-treated patients
Background Genetically engineered chimeric antigen receptor (CAR) T lymphocytes are promising therapeutic tools for cancer. Four CAR T cell drugs, including tisagenlecleucel (tisa-cel) and axicabtagene-ciloleucel (axi-cel), all targeting CD19, are currently approved for treating B cell malignancies....
Saved in:
Published in: | Journal of translational medicine 2021-06, Vol.19 (1), p.1-265, Article 265 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c574t-2df333e94ea398ea22148b329a0c2966853341157a8b8e4d00e2e3520a01a22b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c574t-2df333e94ea398ea22148b329a0c2966853341157a8b8e4d00e2e3520a01a22b3 |
container_end_page | 265 |
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of translational medicine |
container_volume | 19 |
creator | Haderbache, Rafik Warda, Walid Hervouet, Eric da Rocha, Mathieu Neto Trad, Rim Allain, Vincent Nicod, Clementine Thieblemeont, Catherine Boissel, Nicolas Varlet, Pauline Agha, Ibrahim Yakoub Bouquet, Lucie Guiot, Melanie Venet, Fabienne Sujobert, Pierre Roussel, Xavier Rouzaire, Paul-Oliver Caillot, Denis Casasnovas, Olivier Bories, Jean Christophe Bachy, Emmanuel Caillat-Zucman, Sophie Deschamps, Marina Ferrand, Christophe |
description | Background Genetically engineered chimeric antigen receptor (CAR) T lymphocytes are promising therapeutic tools for cancer. Four CAR T cell drugs, including tisagenlecleucel (tisa-cel) and axicabtagene-ciloleucel (axi-cel), all targeting CD19, are currently approved for treating B cell malignancies. Flow cytometry (FC) remains the standard for monitoring CAR T cells using a recombinant biotinylated target protein. Nevertheless, there is a need for additional tools, and the challenge is to develop an easy, relevant, highly sensitive, reproducible, and inexpensive detection method. Molecular tools can meet this need to specifically monitor long-term persistent CAR T cells. Methods Based on 2 experimental CAR T cell constructs, IL-1RAP and CS1, we designed 2 quantitative digital droplet (ddPCR) PCR assays. By targeting the 4.1BB/CD3z (28BBz) or 28/CD3z (28z) junction area, we demonstrated that PCR assays can be applied to approved CD19 CAR T drugs. Both 28z and 28BBz ddPCR assays allow determination of the average vector copy number (VCN) per cell. We confirmed that the VCN is dependent on the multiplicity of infection and verified that the VCN of our experimental or GMP-like IL-1RAP CAR T cells met the requirement (< 5 VCN/cell) for delivery to the clinical department, similar to approved axi-cel or tisa-cel drugs. Results 28BBz and 28z ddPCR assays applied to 2 tumoral (acute myeloid leukemia (AML) or multiple myeloma (MM) xenograft humanized NSG mouse models allowed us to quantify the early expansion (up to day 30) of CAR T cells after injection. Interestingly, following initial expansion, when circulating CAR T cells were challenged with the tumor, we noted a second expansion phase. Investigation of the bone marrow, spleen and lung showed that CAR T cells disseminated more within these tissues in mice previously injected with leukemic cell lines. Finally, circulating CAR T cell ddPCR monitoring of R/R acute lymphoid leukemia or diffuse large B cell lymphoma (n = 10 for tisa-cel and n = 7 for axi-cel) patients treated with both approved CAR T cells allowed detection of early expansion, which was highly correlated with FC, as well as long-term persistence (up to 450 days), while FC failed to detect these events. Conclusion Overall, we designed and validated 2 ddPCR assays allowing routine or preclinical monitoring of early- and long-term circulating approved or experimental CAR T cells, including our own IL-1RAP CAR T cells, which will be evaluated in an up |
doi_str_mv | 10.1186/s12967-021-02925-z |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_89a040a3efb94cbf9476eba894f1658e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672258367</galeid><doaj_id>oai_doaj_org_article_89a040a3efb94cbf9476eba894f1658e</doaj_id><sourcerecordid>A672258367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-2df333e94ea398ea22148b329a0c2966853341157a8b8e4d00e2e3520a01a22b3</originalsourceid><addsrcrecordid>eNptks9u1DAQxiMEoqXwApwscYFDiv8lcS5Iqy3QSiuBqnK2nGSSepXYwU6Wtq_ESzLpVtCtkBXZmvm-X2ZGkyRvGT1lTOUfI-NlXqSUM_xKnqV3z5JjJosyzVSRP3_0PkpexbillMtMli-TIyFZJnPKj5PfZ8GPPUyksZ2dTE--ry-J6Xv_K5Id1JMPpPbjLXHzUEEgJkaIcQA3EeMaMnhnUWJdR3xL4GaEYJckctarS3JFauj7SKwjw4wqIDfgfBdMO6G1AUwh34xj8DtoyPqMlY986RTATBgfzWQRGl8nL1rTR3jzcJ8kP758vlqfp5tvXy_Wq01aZ4WcUt60QggoJRhRKjCcM6kqwUtDaxxYrjKB_bOsMKpSIBtKgYPIODWUobgSJ8nFntt4s9UjtmTCrfbG6vuAD502YbJ1D1ohVFIjoK1KWVdtKYscKqNK2bI8U4CsT3vWOFcDNDX2EUx_AD3MOHutO7_TimOFKkfAhz3g-ontfLXRS4wKKUUp2Y6h9v3Dz4L_OUOc9GDjMkrjwM9R80xKLKuQBUrfPZFu_RwcjhVVOCAqRSH_qTqDzVrXeqyxXqB6lRecZ0rkC-v0Pyo8DQy29g5ai_EDA98b6uBjDND-bYxRvay23q-2xtXW96ut78Qfg4Xp-Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553304374</pqid></control><display><type>article</type><title>Droplet digital PCR allows vector copy number assessment and monitoring of experimental CAR T cells in murine xenograft models or approved CD19 CAR T cell-treated patients</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Haderbache, Rafik ; Warda, Walid ; Hervouet, Eric ; da Rocha, Mathieu Neto ; Trad, Rim ; Allain, Vincent ; Nicod, Clementine ; Thieblemeont, Catherine ; Boissel, Nicolas ; Varlet, Pauline ; Agha, Ibrahim Yakoub ; Bouquet, Lucie ; Guiot, Melanie ; Venet, Fabienne ; Sujobert, Pierre ; Roussel, Xavier ; Rouzaire, Paul-Oliver ; Caillot, Denis ; Casasnovas, Olivier ; Bories, Jean Christophe ; Bachy, Emmanuel ; Caillat-Zucman, Sophie ; Deschamps, Marina ; Ferrand, Christophe</creator><creatorcontrib>Haderbache, Rafik ; Warda, Walid ; Hervouet, Eric ; da Rocha, Mathieu Neto ; Trad, Rim ; Allain, Vincent ; Nicod, Clementine ; Thieblemeont, Catherine ; Boissel, Nicolas ; Varlet, Pauline ; Agha, Ibrahim Yakoub ; Bouquet, Lucie ; Guiot, Melanie ; Venet, Fabienne ; Sujobert, Pierre ; Roussel, Xavier ; Rouzaire, Paul-Oliver ; Caillot, Denis ; Casasnovas, Olivier ; Bories, Jean Christophe ; Bachy, Emmanuel ; Caillat-Zucman, Sophie ; Deschamps, Marina ; Ferrand, Christophe</creatorcontrib><description>Background Genetically engineered chimeric antigen receptor (CAR) T lymphocytes are promising therapeutic tools for cancer. Four CAR T cell drugs, including tisagenlecleucel (tisa-cel) and axicabtagene-ciloleucel (axi-cel), all targeting CD19, are currently approved for treating B cell malignancies. Flow cytometry (FC) remains the standard for monitoring CAR T cells using a recombinant biotinylated target protein. Nevertheless, there is a need for additional tools, and the challenge is to develop an easy, relevant, highly sensitive, reproducible, and inexpensive detection method. Molecular tools can meet this need to specifically monitor long-term persistent CAR T cells. Methods Based on 2 experimental CAR T cell constructs, IL-1RAP and CS1, we designed 2 quantitative digital droplet (ddPCR) PCR assays. By targeting the 4.1BB/CD3z (28BBz) or 28/CD3z (28z) junction area, we demonstrated that PCR assays can be applied to approved CD19 CAR T drugs. Both 28z and 28BBz ddPCR assays allow determination of the average vector copy number (VCN) per cell. We confirmed that the VCN is dependent on the multiplicity of infection and verified that the VCN of our experimental or GMP-like IL-1RAP CAR T cells met the requirement (< 5 VCN/cell) for delivery to the clinical department, similar to approved axi-cel or tisa-cel drugs. Results 28BBz and 28z ddPCR assays applied to 2 tumoral (acute myeloid leukemia (AML) or multiple myeloma (MM) xenograft humanized NSG mouse models allowed us to quantify the early expansion (up to day 30) of CAR T cells after injection. Interestingly, following initial expansion, when circulating CAR T cells were challenged with the tumor, we noted a second expansion phase. Investigation of the bone marrow, spleen and lung showed that CAR T cells disseminated more within these tissues in mice previously injected with leukemic cell lines. Finally, circulating CAR T cell ddPCR monitoring of R/R acute lymphoid leukemia or diffuse large B cell lymphoma (n = 10 for tisa-cel and n = 7 for axi-cel) patients treated with both approved CAR T cells allowed detection of early expansion, which was highly correlated with FC, as well as long-term persistence (up to 450 days), while FC failed to detect these events. Conclusion Overall, we designed and validated 2 ddPCR assays allowing routine or preclinical monitoring of early- and long-term circulating approved or experimental CAR T cells, including our own IL-1RAP CAR T cells, which will be evaluated in an upcoming phase I clinical trial. Keywords: Chimeric antigen receptor, Droplet digital PCR, IL-1RAP, Tisa-cel, Axi-cel, Monitoring</description><identifier>ISSN: 1479-5876</identifier><identifier>EISSN: 1479-5876</identifier><identifier>DOI: 10.1186/s12967-021-02925-z</identifier><identifier>PMID: 34154602</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Acute lymphoblastic leukemia ; Acute myeloid leukemia ; Animal models ; Antigen receptors, T cell ; Axi-cel ; B-cell lymphoma ; Bone marrow ; Cancer ; Care and treatment ; CD19 antigen ; Cell culture ; Chimeric antigen receptor ; Chimeric antigen receptors ; Clinical trials ; Cloning ; Copy number ; Droplet digital PCR ; Drug therapy ; Drug utilization ; Flow cytometry ; Genetic aspects ; Genetic engineering ; Genetic testing ; Growth factors ; Hematology ; Human health and pathology ; IL-1RAP ; Immune system ; Interleukin 1 receptors ; Leukemia ; Life Sciences ; Lymphatic leukemia ; Lymphocytes ; Lymphocytes T ; Lymphomas ; Methodology ; Methods ; Monitoring ; Monoclonal antibodies ; Multiple myeloma ; Multiplicity of infection ; Myeloid leukemia ; Patients ; Polymerase chain reaction ; Proteins ; Receptors ; Spleen ; T cells ; Tisa-cel ; Xenografts</subject><ispartof>Journal of translational medicine, 2021-06, Vol.19 (1), p.1-265, Article 265</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-2df333e94ea398ea22148b329a0c2966853341157a8b8e4d00e2e3520a01a22b3</citedby><cites>FETCH-LOGICAL-c574t-2df333e94ea398ea22148b329a0c2966853341157a8b8e4d00e2e3520a01a22b3</cites><orcidid>0000-0003-0119-3919 ; 0000-0003-1724-4792 ; 0000-0002-9108-1162 ; 0000-0003-0462-4235 ; 0000-0002-4535-3550 ; 0000-0002-4841-7812 ; 0000-0003-2694-7510 ; 0000-0003-2923-4559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8215786/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2553304374?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://uca.hal.science/hal-03443941$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Haderbache, Rafik</creatorcontrib><creatorcontrib>Warda, Walid</creatorcontrib><creatorcontrib>Hervouet, Eric</creatorcontrib><creatorcontrib>da Rocha, Mathieu Neto</creatorcontrib><creatorcontrib>Trad, Rim</creatorcontrib><creatorcontrib>Allain, Vincent</creatorcontrib><creatorcontrib>Nicod, Clementine</creatorcontrib><creatorcontrib>Thieblemeont, Catherine</creatorcontrib><creatorcontrib>Boissel, Nicolas</creatorcontrib><creatorcontrib>Varlet, Pauline</creatorcontrib><creatorcontrib>Agha, Ibrahim Yakoub</creatorcontrib><creatorcontrib>Bouquet, Lucie</creatorcontrib><creatorcontrib>Guiot, Melanie</creatorcontrib><creatorcontrib>Venet, Fabienne</creatorcontrib><creatorcontrib>Sujobert, Pierre</creatorcontrib><creatorcontrib>Roussel, Xavier</creatorcontrib><creatorcontrib>Rouzaire, Paul-Oliver</creatorcontrib><creatorcontrib>Caillot, Denis</creatorcontrib><creatorcontrib>Casasnovas, Olivier</creatorcontrib><creatorcontrib>Bories, Jean Christophe</creatorcontrib><creatorcontrib>Bachy, Emmanuel</creatorcontrib><creatorcontrib>Caillat-Zucman, Sophie</creatorcontrib><creatorcontrib>Deschamps, Marina</creatorcontrib><creatorcontrib>Ferrand, Christophe</creatorcontrib><title>Droplet digital PCR allows vector copy number assessment and monitoring of experimental CAR T cells in murine xenograft models or approved CD19 CAR T cell-treated patients</title><title>Journal of translational medicine</title><description>Background Genetically engineered chimeric antigen receptor (CAR) T lymphocytes are promising therapeutic tools for cancer. Four CAR T cell drugs, including tisagenlecleucel (tisa-cel) and axicabtagene-ciloleucel (axi-cel), all targeting CD19, are currently approved for treating B cell malignancies. Flow cytometry (FC) remains the standard for monitoring CAR T cells using a recombinant biotinylated target protein. Nevertheless, there is a need for additional tools, and the challenge is to develop an easy, relevant, highly sensitive, reproducible, and inexpensive detection method. Molecular tools can meet this need to specifically monitor long-term persistent CAR T cells. Methods Based on 2 experimental CAR T cell constructs, IL-1RAP and CS1, we designed 2 quantitative digital droplet (ddPCR) PCR assays. By targeting the 4.1BB/CD3z (28BBz) or 28/CD3z (28z) junction area, we demonstrated that PCR assays can be applied to approved CD19 CAR T drugs. Both 28z and 28BBz ddPCR assays allow determination of the average vector copy number (VCN) per cell. We confirmed that the VCN is dependent on the multiplicity of infection and verified that the VCN of our experimental or GMP-like IL-1RAP CAR T cells met the requirement (< 5 VCN/cell) for delivery to the clinical department, similar to approved axi-cel or tisa-cel drugs. Results 28BBz and 28z ddPCR assays applied to 2 tumoral (acute myeloid leukemia (AML) or multiple myeloma (MM) xenograft humanized NSG mouse models allowed us to quantify the early expansion (up to day 30) of CAR T cells after injection. Interestingly, following initial expansion, when circulating CAR T cells were challenged with the tumor, we noted a second expansion phase. Investigation of the bone marrow, spleen and lung showed that CAR T cells disseminated more within these tissues in mice previously injected with leukemic cell lines. Finally, circulating CAR T cell ddPCR monitoring of R/R acute lymphoid leukemia or diffuse large B cell lymphoma (n = 10 for tisa-cel and n = 7 for axi-cel) patients treated with both approved CAR T cells allowed detection of early expansion, which was highly correlated with FC, as well as long-term persistence (up to 450 days), while FC failed to detect these events. Conclusion Overall, we designed and validated 2 ddPCR assays allowing routine or preclinical monitoring of early- and long-term circulating approved or experimental CAR T cells, including our own IL-1RAP CAR T cells, which will be evaluated in an upcoming phase I clinical trial. Keywords: Chimeric antigen receptor, Droplet digital PCR, IL-1RAP, Tisa-cel, Axi-cel, Monitoring</description><subject>Acute lymphoblastic leukemia</subject><subject>Acute myeloid leukemia</subject><subject>Animal models</subject><subject>Antigen receptors, T cell</subject><subject>Axi-cel</subject><subject>B-cell lymphoma</subject><subject>Bone marrow</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>CD19 antigen</subject><subject>Cell culture</subject><subject>Chimeric antigen receptor</subject><subject>Chimeric antigen receptors</subject><subject>Clinical trials</subject><subject>Cloning</subject><subject>Copy number</subject><subject>Droplet digital PCR</subject><subject>Drug therapy</subject><subject>Drug utilization</subject><subject>Flow cytometry</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetic testing</subject><subject>Growth factors</subject><subject>Hematology</subject><subject>Human health and pathology</subject><subject>IL-1RAP</subject><subject>Immune system</subject><subject>Interleukin 1 receptors</subject><subject>Leukemia</subject><subject>Life Sciences</subject><subject>Lymphatic leukemia</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphomas</subject><subject>Methodology</subject><subject>Methods</subject><subject>Monitoring</subject><subject>Monoclonal antibodies</subject><subject>Multiple myeloma</subject><subject>Multiplicity of infection</subject><subject>Myeloid leukemia</subject><subject>Patients</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Spleen</subject><subject>T cells</subject><subject>Tisa-cel</subject><subject>Xenografts</subject><issn>1479-5876</issn><issn>1479-5876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9u1DAQxiMEoqXwApwscYFDiv8lcS5Iqy3QSiuBqnK2nGSSepXYwU6Wtq_ESzLpVtCtkBXZmvm-X2ZGkyRvGT1lTOUfI-NlXqSUM_xKnqV3z5JjJosyzVSRP3_0PkpexbillMtMli-TIyFZJnPKj5PfZ8GPPUyksZ2dTE--ry-J6Xv_K5Id1JMPpPbjLXHzUEEgJkaIcQA3EeMaMnhnUWJdR3xL4GaEYJckctarS3JFauj7SKwjw4wqIDfgfBdMO6G1AUwh34xj8DtoyPqMlY986RTATBgfzWQRGl8nL1rTR3jzcJ8kP758vlqfp5tvXy_Wq01aZ4WcUt60QggoJRhRKjCcM6kqwUtDaxxYrjKB_bOsMKpSIBtKgYPIODWUobgSJ8nFntt4s9UjtmTCrfbG6vuAD502YbJ1D1ohVFIjoK1KWVdtKYscKqNK2bI8U4CsT3vWOFcDNDX2EUx_AD3MOHutO7_TimOFKkfAhz3g-ontfLXRS4wKKUUp2Y6h9v3Dz4L_OUOc9GDjMkrjwM9R80xKLKuQBUrfPZFu_RwcjhVVOCAqRSH_qTqDzVrXeqyxXqB6lRecZ0rkC-v0Pyo8DQy29g5ai_EDA98b6uBjDND-bYxRvay23q-2xtXW96ut78Qfg4Xp-Q</recordid><startdate>20210621</startdate><enddate>20210621</enddate><creator>Haderbache, Rafik</creator><creator>Warda, Walid</creator><creator>Hervouet, Eric</creator><creator>da Rocha, Mathieu Neto</creator><creator>Trad, Rim</creator><creator>Allain, Vincent</creator><creator>Nicod, Clementine</creator><creator>Thieblemeont, Catherine</creator><creator>Boissel, Nicolas</creator><creator>Varlet, Pauline</creator><creator>Agha, Ibrahim Yakoub</creator><creator>Bouquet, Lucie</creator><creator>Guiot, Melanie</creator><creator>Venet, Fabienne</creator><creator>Sujobert, Pierre</creator><creator>Roussel, Xavier</creator><creator>Rouzaire, Paul-Oliver</creator><creator>Caillot, Denis</creator><creator>Casasnovas, Olivier</creator><creator>Bories, Jean Christophe</creator><creator>Bachy, Emmanuel</creator><creator>Caillat-Zucman, Sophie</creator><creator>Deschamps, Marina</creator><creator>Ferrand, Christophe</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0119-3919</orcidid><orcidid>https://orcid.org/0000-0003-1724-4792</orcidid><orcidid>https://orcid.org/0000-0002-9108-1162</orcidid><orcidid>https://orcid.org/0000-0003-0462-4235</orcidid><orcidid>https://orcid.org/0000-0002-4535-3550</orcidid><orcidid>https://orcid.org/0000-0002-4841-7812</orcidid><orcidid>https://orcid.org/0000-0003-2694-7510</orcidid><orcidid>https://orcid.org/0000-0003-2923-4559</orcidid></search><sort><creationdate>20210621</creationdate><title>Droplet digital PCR allows vector copy number assessment and monitoring of experimental CAR T cells in murine xenograft models or approved CD19 CAR T cell-treated patients</title><author>Haderbache, Rafik ; Warda, Walid ; Hervouet, Eric ; da Rocha, Mathieu Neto ; Trad, Rim ; Allain, Vincent ; Nicod, Clementine ; Thieblemeont, Catherine ; Boissel, Nicolas ; Varlet, Pauline ; Agha, Ibrahim Yakoub ; Bouquet, Lucie ; Guiot, Melanie ; Venet, Fabienne ; Sujobert, Pierre ; Roussel, Xavier ; Rouzaire, Paul-Oliver ; Caillot, Denis ; Casasnovas, Olivier ; Bories, Jean Christophe ; Bachy, Emmanuel ; Caillat-Zucman, Sophie ; Deschamps, Marina ; Ferrand, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-2df333e94ea398ea22148b329a0c2966853341157a8b8e4d00e2e3520a01a22b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acute lymphoblastic leukemia</topic><topic>Acute myeloid leukemia</topic><topic>Animal models</topic><topic>Antigen receptors, T cell</topic><topic>Axi-cel</topic><topic>B-cell lymphoma</topic><topic>Bone marrow</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>CD19 antigen</topic><topic>Cell culture</topic><topic>Chimeric antigen receptor</topic><topic>Chimeric antigen receptors</topic><topic>Clinical trials</topic><topic>Cloning</topic><topic>Copy number</topic><topic>Droplet digital PCR</topic><topic>Drug therapy</topic><topic>Drug utilization</topic><topic>Flow cytometry</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetic testing</topic><topic>Growth factors</topic><topic>Hematology</topic><topic>Human health and pathology</topic><topic>IL-1RAP</topic><topic>Immune system</topic><topic>Interleukin 1 receptors</topic><topic>Leukemia</topic><topic>Life Sciences</topic><topic>Lymphatic leukemia</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphomas</topic><topic>Methodology</topic><topic>Methods</topic><topic>Monitoring</topic><topic>Monoclonal antibodies</topic><topic>Multiple myeloma</topic><topic>Multiplicity of infection</topic><topic>Myeloid leukemia</topic><topic>Patients</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Spleen</topic><topic>T cells</topic><topic>Tisa-cel</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haderbache, Rafik</creatorcontrib><creatorcontrib>Warda, Walid</creatorcontrib><creatorcontrib>Hervouet, Eric</creatorcontrib><creatorcontrib>da Rocha, Mathieu Neto</creatorcontrib><creatorcontrib>Trad, Rim</creatorcontrib><creatorcontrib>Allain, Vincent</creatorcontrib><creatorcontrib>Nicod, Clementine</creatorcontrib><creatorcontrib>Thieblemeont, Catherine</creatorcontrib><creatorcontrib>Boissel, Nicolas</creatorcontrib><creatorcontrib>Varlet, Pauline</creatorcontrib><creatorcontrib>Agha, Ibrahim Yakoub</creatorcontrib><creatorcontrib>Bouquet, Lucie</creatorcontrib><creatorcontrib>Guiot, Melanie</creatorcontrib><creatorcontrib>Venet, Fabienne</creatorcontrib><creatorcontrib>Sujobert, Pierre</creatorcontrib><creatorcontrib>Roussel, Xavier</creatorcontrib><creatorcontrib>Rouzaire, Paul-Oliver</creatorcontrib><creatorcontrib>Caillot, Denis</creatorcontrib><creatorcontrib>Casasnovas, Olivier</creatorcontrib><creatorcontrib>Bories, Jean Christophe</creatorcontrib><creatorcontrib>Bachy, Emmanuel</creatorcontrib><creatorcontrib>Caillat-Zucman, Sophie</creatorcontrib><creatorcontrib>Deschamps, Marina</creatorcontrib><creatorcontrib>Ferrand, Christophe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haderbache, Rafik</au><au>Warda, Walid</au><au>Hervouet, Eric</au><au>da Rocha, Mathieu Neto</au><au>Trad, Rim</au><au>Allain, Vincent</au><au>Nicod, Clementine</au><au>Thieblemeont, Catherine</au><au>Boissel, Nicolas</au><au>Varlet, Pauline</au><au>Agha, Ibrahim Yakoub</au><au>Bouquet, Lucie</au><au>Guiot, Melanie</au><au>Venet, Fabienne</au><au>Sujobert, Pierre</au><au>Roussel, Xavier</au><au>Rouzaire, Paul-Oliver</au><au>Caillot, Denis</au><au>Casasnovas, Olivier</au><au>Bories, Jean Christophe</au><au>Bachy, Emmanuel</au><au>Caillat-Zucman, Sophie</au><au>Deschamps, Marina</au><au>Ferrand, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Droplet digital PCR allows vector copy number assessment and monitoring of experimental CAR T cells in murine xenograft models or approved CD19 CAR T cell-treated patients</atitle><jtitle>Journal of translational medicine</jtitle><date>2021-06-21</date><risdate>2021</risdate><volume>19</volume><issue>1</issue><spage>1</spage><epage>265</epage><pages>1-265</pages><artnum>265</artnum><issn>1479-5876</issn><eissn>1479-5876</eissn><abstract>Background Genetically engineered chimeric antigen receptor (CAR) T lymphocytes are promising therapeutic tools for cancer. Four CAR T cell drugs, including tisagenlecleucel (tisa-cel) and axicabtagene-ciloleucel (axi-cel), all targeting CD19, are currently approved for treating B cell malignancies. Flow cytometry (FC) remains the standard for monitoring CAR T cells using a recombinant biotinylated target protein. Nevertheless, there is a need for additional tools, and the challenge is to develop an easy, relevant, highly sensitive, reproducible, and inexpensive detection method. Molecular tools can meet this need to specifically monitor long-term persistent CAR T cells. Methods Based on 2 experimental CAR T cell constructs, IL-1RAP and CS1, we designed 2 quantitative digital droplet (ddPCR) PCR assays. By targeting the 4.1BB/CD3z (28BBz) or 28/CD3z (28z) junction area, we demonstrated that PCR assays can be applied to approved CD19 CAR T drugs. Both 28z and 28BBz ddPCR assays allow determination of the average vector copy number (VCN) per cell. We confirmed that the VCN is dependent on the multiplicity of infection and verified that the VCN of our experimental or GMP-like IL-1RAP CAR T cells met the requirement (< 5 VCN/cell) for delivery to the clinical department, similar to approved axi-cel or tisa-cel drugs. Results 28BBz and 28z ddPCR assays applied to 2 tumoral (acute myeloid leukemia (AML) or multiple myeloma (MM) xenograft humanized NSG mouse models allowed us to quantify the early expansion (up to day 30) of CAR T cells after injection. Interestingly, following initial expansion, when circulating CAR T cells were challenged with the tumor, we noted a second expansion phase. Investigation of the bone marrow, spleen and lung showed that CAR T cells disseminated more within these tissues in mice previously injected with leukemic cell lines. Finally, circulating CAR T cell ddPCR monitoring of R/R acute lymphoid leukemia or diffuse large B cell lymphoma (n = 10 for tisa-cel and n = 7 for axi-cel) patients treated with both approved CAR T cells allowed detection of early expansion, which was highly correlated with FC, as well as long-term persistence (up to 450 days), while FC failed to detect these events. Conclusion Overall, we designed and validated 2 ddPCR assays allowing routine or preclinical monitoring of early- and long-term circulating approved or experimental CAR T cells, including our own IL-1RAP CAR T cells, which will be evaluated in an upcoming phase I clinical trial. Keywords: Chimeric antigen receptor, Droplet digital PCR, IL-1RAP, Tisa-cel, Axi-cel, Monitoring</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><pmid>34154602</pmid><doi>10.1186/s12967-021-02925-z</doi><orcidid>https://orcid.org/0000-0003-0119-3919</orcidid><orcidid>https://orcid.org/0000-0003-1724-4792</orcidid><orcidid>https://orcid.org/0000-0002-9108-1162</orcidid><orcidid>https://orcid.org/0000-0003-0462-4235</orcidid><orcidid>https://orcid.org/0000-0002-4535-3550</orcidid><orcidid>https://orcid.org/0000-0002-4841-7812</orcidid><orcidid>https://orcid.org/0000-0003-2694-7510</orcidid><orcidid>https://orcid.org/0000-0003-2923-4559</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1479-5876 |
ispartof | Journal of translational medicine, 2021-06, Vol.19 (1), p.1-265, Article 265 |
issn | 1479-5876 1479-5876 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_89a040a3efb94cbf9476eba894f1658e |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Acute lymphoblastic leukemia Acute myeloid leukemia Animal models Antigen receptors, T cell Axi-cel B-cell lymphoma Bone marrow Cancer Care and treatment CD19 antigen Cell culture Chimeric antigen receptor Chimeric antigen receptors Clinical trials Cloning Copy number Droplet digital PCR Drug therapy Drug utilization Flow cytometry Genetic aspects Genetic engineering Genetic testing Growth factors Hematology Human health and pathology IL-1RAP Immune system Interleukin 1 receptors Leukemia Life Sciences Lymphatic leukemia Lymphocytes Lymphocytes T Lymphomas Methodology Methods Monitoring Monoclonal antibodies Multiple myeloma Multiplicity of infection Myeloid leukemia Patients Polymerase chain reaction Proteins Receptors Spleen T cells Tisa-cel Xenografts |
title | Droplet digital PCR allows vector copy number assessment and monitoring of experimental CAR T cells in murine xenograft models or approved CD19 CAR T cell-treated patients |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Droplet%20digital%20PCR%20allows%20vector%20copy%20number%20assessment%20and%20monitoring%20of%20experimental%20CAR%20T%20cells%20in%20murine%20xenograft%20models%20or%20approved%20CD19%20CAR%20T%20cell-treated%20patients&rft.jtitle=Journal%20of%20translational%20medicine&rft.au=Haderbache,%20Rafik&rft.date=2021-06-21&rft.volume=19&rft.issue=1&rft.spage=1&rft.epage=265&rft.pages=1-265&rft.artnum=265&rft.issn=1479-5876&rft.eissn=1479-5876&rft_id=info:doi/10.1186/s12967-021-02925-z&rft_dat=%3Cgale_doaj_%3EA672258367%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c574t-2df333e94ea398ea22148b329a0c2966853341157a8b8e4d00e2e3520a01a22b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2553304374&rft_id=info:pmid/34154602&rft_galeid=A672258367&rfr_iscdi=true |