Loading…

Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation

Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular En...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2017-11, Vol.18 (11), p.2478
Main Authors: Medeiros Da Cunha, Carolina M, Perugini, Valeria, Bernegger, Petra, Centola, Matteo, Barbero, Andrea, Guildford, Anna L, Santin, Matteo, Banfi, Andrea, Martin, Ivan, Marsano, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-23b6d04780f88f7e50ca40deaa6b1cabcdab8fbceabf2946a8942b9a1e68c41e3
cites cdi_FETCH-LOGICAL-c478t-23b6d04780f88f7e50ca40deaa6b1cabcdab8fbceabf2946a8942b9a1e68c41e3
container_end_page
container_issue 11
container_start_page 2478
container_title International journal of molecular sciences
container_volume 18
creator Medeiros Da Cunha, Carolina M
Perugini, Valeria
Bernegger, Petra
Centola, Matteo
Barbero, Andrea
Guildford, Anna L
Santin, Matteo
Banfi, Andrea
Martin, Ivan
Marsano, Anna
description Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF) plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1) or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC) freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.
doi_str_mv 10.3390/ijms18112478
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_89a3d5a6639441d49d30cc64b3c68cde</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_89a3d5a6639441d49d30cc64b3c68cde</doaj_id><sourcerecordid>1966982578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-23b6d04780f88f7e50ca40deaa6b1cabcdab8fbceabf2946a8942b9a1e68c41e3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EoqVw44xW4sKBgL_Wa1-QUNSUSJU4QHu1xh-bOPKui71bxL_HSUqVcvLI8-jRzLwIvSX4E2MKfw67oRBJCOWdfIbOCad0gbHonp_UZ-hVKTuMKaOteonOqCICS96eo5tbKHaOkJvL0aVp62OA2Fzl9HvaNiuwU8rND_9r9mXKMIU0Vm4Lo_WlWY_NbbhPzRLyFCJsfLNKeThAr9GLHmLxbx7eC3Szuvy5_La4_n61Xn69Xtg67LSgzAiHa4l7KfvOt9gCx84DCEMsGOvAyN5YD6aniguQilOjgHghLSeeXaD10esS7PRdDgPkPzpB0IePlDd6P5yNXksFzLUgBFOcE8eVY9hawQ2zVeb2ri9H191sBu-sH-vG8Yn0aWcMW71J97rtCOOcV8GHB0FOh4PpIRTrY4TRp7loooRQkradrOj7_9BdmvNYT1WprlOdaLGo1McjZXMqJfv-cRiC9T57fZp9xd-dLvAI_wub_QUoDKxN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977976506</pqid></control><display><type>article</type><title>Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation</title><source>PubMed (Medline)</source><source>Access via ProQuest (Open Access)</source><creator>Medeiros Da Cunha, Carolina M ; Perugini, Valeria ; Bernegger, Petra ; Centola, Matteo ; Barbero, Andrea ; Guildford, Anna L ; Santin, Matteo ; Banfi, Andrea ; Martin, Ivan ; Marsano, Anna</creator><creatorcontrib>Medeiros Da Cunha, Carolina M ; Perugini, Valeria ; Bernegger, Petra ; Centola, Matteo ; Barbero, Andrea ; Guildford, Anna L ; Santin, Matteo ; Banfi, Andrea ; Martin, Ivan ; Marsano, Anna</creatorcontrib><description>Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF) plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1) or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC) freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms18112478</identifier><identifier>PMID: 29160845</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Angiogenesis ; Antiangiogenics ; Autografts ; Cartilage ; Chondrocytes ; Chondrocytes - drug effects ; Chondrocytes - metabolism ; Chondrogenesis ; Chondrogenesis - drug effects ; Collagen ; collagen scaffold ; dendron ; Differentiation ; Human Umbilical Vein Endothelial Cells ; Humans ; Hyaline Cartilage - drug effects ; Hyaline Cartilage - metabolism ; Implantation ; nasal chondrocyte ; Neovascularization, Pathologic - drug therapy ; Neovascularization, Pathologic - metabolism ; Ossification ; Peptide Fragments - pharmacology ; Peptides ; Scaffolds ; soluble VEGF receptor-2 ; Surgical implants ; Transplantation ; Transplants &amp; implants ; Vascular endothelial growth factor ; Vascular endothelial growth factor receptor 2 ; Vascular Endothelial Growth Factor Receptor-2 - chemistry ; Vascular Endothelial Growth Factor Receptor-2 - metabolism ; Vascular Endothelial Growth Factors - antagonists &amp; inhibitors ; Vascular Endothelial Growth Factors - metabolism ; Vascular Endothelial Growth Factors - pharmacology</subject><ispartof>International journal of molecular sciences, 2017-11, Vol.18 (11), p.2478</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-23b6d04780f88f7e50ca40deaa6b1cabcdab8fbceabf2946a8942b9a1e68c41e3</citedby><cites>FETCH-LOGICAL-c478t-23b6d04780f88f7e50ca40deaa6b1cabcdab8fbceabf2946a8942b9a1e68c41e3</cites><orcidid>0000-0001-6493-0432 ; 0000-0001-5737-8811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1977976506/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1977976506?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29160845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Medeiros Da Cunha, Carolina M</creatorcontrib><creatorcontrib>Perugini, Valeria</creatorcontrib><creatorcontrib>Bernegger, Petra</creatorcontrib><creatorcontrib>Centola, Matteo</creatorcontrib><creatorcontrib>Barbero, Andrea</creatorcontrib><creatorcontrib>Guildford, Anna L</creatorcontrib><creatorcontrib>Santin, Matteo</creatorcontrib><creatorcontrib>Banfi, Andrea</creatorcontrib><creatorcontrib>Martin, Ivan</creatorcontrib><creatorcontrib>Marsano, Anna</creatorcontrib><title>Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF) plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1) or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC) freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.</description><subject>Angiogenesis</subject><subject>Antiangiogenics</subject><subject>Autografts</subject><subject>Cartilage</subject><subject>Chondrocytes</subject><subject>Chondrocytes - drug effects</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis</subject><subject>Chondrogenesis - drug effects</subject><subject>Collagen</subject><subject>collagen scaffold</subject><subject>dendron</subject><subject>Differentiation</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Hyaline Cartilage - drug effects</subject><subject>Hyaline Cartilage - metabolism</subject><subject>Implantation</subject><subject>nasal chondrocyte</subject><subject>Neovascularization, Pathologic - drug therapy</subject><subject>Neovascularization, Pathologic - metabolism</subject><subject>Ossification</subject><subject>Peptide Fragments - pharmacology</subject><subject>Peptides</subject><subject>Scaffolds</subject><subject>soluble VEGF receptor-2</subject><subject>Surgical implants</subject><subject>Transplantation</subject><subject>Transplants &amp; implants</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular endothelial growth factor receptor 2</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - chemistry</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><subject>Vascular Endothelial Growth Factors - antagonists &amp; inhibitors</subject><subject>Vascular Endothelial Growth Factors - metabolism</subject><subject>Vascular Endothelial Growth Factors - pharmacology</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1vEzEQhi0EoqVw44xW4sKBgL_Wa1-QUNSUSJU4QHu1xh-bOPKui71bxL_HSUqVcvLI8-jRzLwIvSX4E2MKfw67oRBJCOWdfIbOCad0gbHonp_UZ-hVKTuMKaOteonOqCICS96eo5tbKHaOkJvL0aVp62OA2Fzl9HvaNiuwU8rND_9r9mXKMIU0Vm4Lo_WlWY_NbbhPzRLyFCJsfLNKeThAr9GLHmLxbx7eC3Szuvy5_La4_n61Xn69Xtg67LSgzAiHa4l7KfvOt9gCx84DCEMsGOvAyN5YD6aniguQilOjgHghLSeeXaD10esS7PRdDgPkPzpB0IePlDd6P5yNXksFzLUgBFOcE8eVY9hawQ2zVeb2ri9H191sBu-sH-vG8Yn0aWcMW71J97rtCOOcV8GHB0FOh4PpIRTrY4TRp7loooRQkradrOj7_9BdmvNYT1WprlOdaLGo1McjZXMqJfv-cRiC9T57fZp9xd-dLvAI_wub_QUoDKxN</recordid><startdate>20171121</startdate><enddate>20171121</enddate><creator>Medeiros Da Cunha, Carolina M</creator><creator>Perugini, Valeria</creator><creator>Bernegger, Petra</creator><creator>Centola, Matteo</creator><creator>Barbero, Andrea</creator><creator>Guildford, Anna L</creator><creator>Santin, Matteo</creator><creator>Banfi, Andrea</creator><creator>Martin, Ivan</creator><creator>Marsano, Anna</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6493-0432</orcidid><orcidid>https://orcid.org/0000-0001-5737-8811</orcidid></search><sort><creationdate>20171121</creationdate><title>Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation</title><author>Medeiros Da Cunha, Carolina M ; Perugini, Valeria ; Bernegger, Petra ; Centola, Matteo ; Barbero, Andrea ; Guildford, Anna L ; Santin, Matteo ; Banfi, Andrea ; Martin, Ivan ; Marsano, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-23b6d04780f88f7e50ca40deaa6b1cabcdab8fbceabf2946a8942b9a1e68c41e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angiogenesis</topic><topic>Antiangiogenics</topic><topic>Autografts</topic><topic>Cartilage</topic><topic>Chondrocytes</topic><topic>Chondrocytes - drug effects</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis</topic><topic>Chondrogenesis - drug effects</topic><topic>Collagen</topic><topic>collagen scaffold</topic><topic>dendron</topic><topic>Differentiation</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Hyaline Cartilage - drug effects</topic><topic>Hyaline Cartilage - metabolism</topic><topic>Implantation</topic><topic>nasal chondrocyte</topic><topic>Neovascularization, Pathologic - drug therapy</topic><topic>Neovascularization, Pathologic - metabolism</topic><topic>Ossification</topic><topic>Peptide Fragments - pharmacology</topic><topic>Peptides</topic><topic>Scaffolds</topic><topic>soluble VEGF receptor-2</topic><topic>Surgical implants</topic><topic>Transplantation</topic><topic>Transplants &amp; implants</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular endothelial growth factor receptor 2</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - chemistry</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><topic>Vascular Endothelial Growth Factors - antagonists &amp; inhibitors</topic><topic>Vascular Endothelial Growth Factors - metabolism</topic><topic>Vascular Endothelial Growth Factors - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medeiros Da Cunha, Carolina M</creatorcontrib><creatorcontrib>Perugini, Valeria</creatorcontrib><creatorcontrib>Bernegger, Petra</creatorcontrib><creatorcontrib>Centola, Matteo</creatorcontrib><creatorcontrib>Barbero, Andrea</creatorcontrib><creatorcontrib>Guildford, Anna L</creatorcontrib><creatorcontrib>Santin, Matteo</creatorcontrib><creatorcontrib>Banfi, Andrea</creatorcontrib><creatorcontrib>Martin, Ivan</creatorcontrib><creatorcontrib>Marsano, Anna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medeiros Da Cunha, Carolina M</au><au>Perugini, Valeria</au><au>Bernegger, Petra</au><au>Centola, Matteo</au><au>Barbero, Andrea</au><au>Guildford, Anna L</au><au>Santin, Matteo</au><au>Banfi, Andrea</au><au>Martin, Ivan</au><au>Marsano, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2017-11-21</date><risdate>2017</risdate><volume>18</volume><issue>11</issue><spage>2478</spage><pages>2478-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF) plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1) or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC) freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29160845</pmid><doi>10.3390/ijms18112478</doi><orcidid>https://orcid.org/0000-0001-6493-0432</orcidid><orcidid>https://orcid.org/0000-0001-5737-8811</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2017-11, Vol.18 (11), p.2478
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_89a3d5a6639441d49d30cc64b3c68cde
source PubMed (Medline); Access via ProQuest (Open Access)
subjects Angiogenesis
Antiangiogenics
Autografts
Cartilage
Chondrocytes
Chondrocytes - drug effects
Chondrocytes - metabolism
Chondrogenesis
Chondrogenesis - drug effects
Collagen
collagen scaffold
dendron
Differentiation
Human Umbilical Vein Endothelial Cells
Humans
Hyaline Cartilage - drug effects
Hyaline Cartilage - metabolism
Implantation
nasal chondrocyte
Neovascularization, Pathologic - drug therapy
Neovascularization, Pathologic - metabolism
Ossification
Peptide Fragments - pharmacology
Peptides
Scaffolds
soluble VEGF receptor-2
Surgical implants
Transplantation
Transplants & implants
Vascular endothelial growth factor
Vascular endothelial growth factor receptor 2
Vascular Endothelial Growth Factor Receptor-2 - chemistry
Vascular Endothelial Growth Factor Receptor-2 - metabolism
Vascular Endothelial Growth Factors - antagonists & inhibitors
Vascular Endothelial Growth Factors - metabolism
Vascular Endothelial Growth Factors - pharmacology
title Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascular%20Endothelial%20Growth%20Factor%20Sequestration%20Enhances%20In%20Vivo%20Cartilage%20Formation&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Medeiros%20Da%20Cunha,%20Carolina%20M&rft.date=2017-11-21&rft.volume=18&rft.issue=11&rft.spage=2478&rft.pages=2478-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms18112478&rft_dat=%3Cproquest_doaj_%3E1966982578%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-23b6d04780f88f7e50ca40deaa6b1cabcdab8fbceabf2946a8942b9a1e68c41e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1977976506&rft_id=info:pmid/29160845&rfr_iscdi=true