Loading…
Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation
Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular En...
Saved in:
Published in: | International journal of molecular sciences 2017-11, Vol.18 (11), p.2478 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-23b6d04780f88f7e50ca40deaa6b1cabcdab8fbceabf2946a8942b9a1e68c41e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-23b6d04780f88f7e50ca40deaa6b1cabcdab8fbceabf2946a8942b9a1e68c41e3 |
container_end_page | |
container_issue | 11 |
container_start_page | 2478 |
container_title | International journal of molecular sciences |
container_volume | 18 |
creator | Medeiros Da Cunha, Carolina M Perugini, Valeria Bernegger, Petra Centola, Matteo Barbero, Andrea Guildford, Anna L Santin, Matteo Banfi, Andrea Martin, Ivan Marsano, Anna |
description | Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF) plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1) or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC) freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site. |
doi_str_mv | 10.3390/ijms18112478 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_89a3d5a6639441d49d30cc64b3c68cde</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_89a3d5a6639441d49d30cc64b3c68cde</doaj_id><sourcerecordid>1966982578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-23b6d04780f88f7e50ca40deaa6b1cabcdab8fbceabf2946a8942b9a1e68c41e3</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EoqVw44xW4sKBgL_Wa1-QUNSUSJU4QHu1xh-bOPKui71bxL_HSUqVcvLI8-jRzLwIvSX4E2MKfw67oRBJCOWdfIbOCad0gbHonp_UZ-hVKTuMKaOteonOqCICS96eo5tbKHaOkJvL0aVp62OA2Fzl9HvaNiuwU8rND_9r9mXKMIU0Vm4Lo_WlWY_NbbhPzRLyFCJsfLNKeThAr9GLHmLxbx7eC3Szuvy5_La4_n61Xn69Xtg67LSgzAiHa4l7KfvOt9gCx84DCEMsGOvAyN5YD6aniguQilOjgHghLSeeXaD10esS7PRdDgPkPzpB0IePlDd6P5yNXksFzLUgBFOcE8eVY9hawQ2zVeb2ri9H191sBu-sH-vG8Yn0aWcMW71J97rtCOOcV8GHB0FOh4PpIRTrY4TRp7loooRQkradrOj7_9BdmvNYT1WprlOdaLGo1McjZXMqJfv-cRiC9T57fZp9xd-dLvAI_wub_QUoDKxN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977976506</pqid></control><display><type>article</type><title>Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation</title><source>PubMed (Medline)</source><source>Access via ProQuest (Open Access)</source><creator>Medeiros Da Cunha, Carolina M ; Perugini, Valeria ; Bernegger, Petra ; Centola, Matteo ; Barbero, Andrea ; Guildford, Anna L ; Santin, Matteo ; Banfi, Andrea ; Martin, Ivan ; Marsano, Anna</creator><creatorcontrib>Medeiros Da Cunha, Carolina M ; Perugini, Valeria ; Bernegger, Petra ; Centola, Matteo ; Barbero, Andrea ; Guildford, Anna L ; Santin, Matteo ; Banfi, Andrea ; Martin, Ivan ; Marsano, Anna</creatorcontrib><description>Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF) plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1) or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC) freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms18112478</identifier><identifier>PMID: 29160845</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Angiogenesis ; Antiangiogenics ; Autografts ; Cartilage ; Chondrocytes ; Chondrocytes - drug effects ; Chondrocytes - metabolism ; Chondrogenesis ; Chondrogenesis - drug effects ; Collagen ; collagen scaffold ; dendron ; Differentiation ; Human Umbilical Vein Endothelial Cells ; Humans ; Hyaline Cartilage - drug effects ; Hyaline Cartilage - metabolism ; Implantation ; nasal chondrocyte ; Neovascularization, Pathologic - drug therapy ; Neovascularization, Pathologic - metabolism ; Ossification ; Peptide Fragments - pharmacology ; Peptides ; Scaffolds ; soluble VEGF receptor-2 ; Surgical implants ; Transplantation ; Transplants & implants ; Vascular endothelial growth factor ; Vascular endothelial growth factor receptor 2 ; Vascular Endothelial Growth Factor Receptor-2 - chemistry ; Vascular Endothelial Growth Factor Receptor-2 - metabolism ; Vascular Endothelial Growth Factors - antagonists & inhibitors ; Vascular Endothelial Growth Factors - metabolism ; Vascular Endothelial Growth Factors - pharmacology</subject><ispartof>International journal of molecular sciences, 2017-11, Vol.18 (11), p.2478</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-23b6d04780f88f7e50ca40deaa6b1cabcdab8fbceabf2946a8942b9a1e68c41e3</citedby><cites>FETCH-LOGICAL-c478t-23b6d04780f88f7e50ca40deaa6b1cabcdab8fbceabf2946a8942b9a1e68c41e3</cites><orcidid>0000-0001-6493-0432 ; 0000-0001-5737-8811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1977976506/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1977976506?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29160845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Medeiros Da Cunha, Carolina M</creatorcontrib><creatorcontrib>Perugini, Valeria</creatorcontrib><creatorcontrib>Bernegger, Petra</creatorcontrib><creatorcontrib>Centola, Matteo</creatorcontrib><creatorcontrib>Barbero, Andrea</creatorcontrib><creatorcontrib>Guildford, Anna L</creatorcontrib><creatorcontrib>Santin, Matteo</creatorcontrib><creatorcontrib>Banfi, Andrea</creatorcontrib><creatorcontrib>Martin, Ivan</creatorcontrib><creatorcontrib>Marsano, Anna</creatorcontrib><title>Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF) plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1) or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC) freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.</description><subject>Angiogenesis</subject><subject>Antiangiogenics</subject><subject>Autografts</subject><subject>Cartilage</subject><subject>Chondrocytes</subject><subject>Chondrocytes - drug effects</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis</subject><subject>Chondrogenesis - drug effects</subject><subject>Collagen</subject><subject>collagen scaffold</subject><subject>dendron</subject><subject>Differentiation</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Hyaline Cartilage - drug effects</subject><subject>Hyaline Cartilage - metabolism</subject><subject>Implantation</subject><subject>nasal chondrocyte</subject><subject>Neovascularization, Pathologic - drug therapy</subject><subject>Neovascularization, Pathologic - metabolism</subject><subject>Ossification</subject><subject>Peptide Fragments - pharmacology</subject><subject>Peptides</subject><subject>Scaffolds</subject><subject>soluble VEGF receptor-2</subject><subject>Surgical implants</subject><subject>Transplantation</subject><subject>Transplants & implants</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular endothelial growth factor receptor 2</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - chemistry</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><subject>Vascular Endothelial Growth Factors - antagonists & inhibitors</subject><subject>Vascular Endothelial Growth Factors - metabolism</subject><subject>Vascular Endothelial Growth Factors - pharmacology</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1vEzEQhi0EoqVw44xW4sKBgL_Wa1-QUNSUSJU4QHu1xh-bOPKui71bxL_HSUqVcvLI8-jRzLwIvSX4E2MKfw67oRBJCOWdfIbOCad0gbHonp_UZ-hVKTuMKaOteonOqCICS96eo5tbKHaOkJvL0aVp62OA2Fzl9HvaNiuwU8rND_9r9mXKMIU0Vm4Lo_WlWY_NbbhPzRLyFCJsfLNKeThAr9GLHmLxbx7eC3Szuvy5_La4_n61Xn69Xtg67LSgzAiHa4l7KfvOt9gCx84DCEMsGOvAyN5YD6aniguQilOjgHghLSeeXaD10esS7PRdDgPkPzpB0IePlDd6P5yNXksFzLUgBFOcE8eVY9hawQ2zVeb2ri9H191sBu-sH-vG8Yn0aWcMW71J97rtCOOcV8GHB0FOh4PpIRTrY4TRp7loooRQkradrOj7_9BdmvNYT1WprlOdaLGo1McjZXMqJfv-cRiC9T57fZp9xd-dLvAI_wub_QUoDKxN</recordid><startdate>20171121</startdate><enddate>20171121</enddate><creator>Medeiros Da Cunha, Carolina M</creator><creator>Perugini, Valeria</creator><creator>Bernegger, Petra</creator><creator>Centola, Matteo</creator><creator>Barbero, Andrea</creator><creator>Guildford, Anna L</creator><creator>Santin, Matteo</creator><creator>Banfi, Andrea</creator><creator>Martin, Ivan</creator><creator>Marsano, Anna</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6493-0432</orcidid><orcidid>https://orcid.org/0000-0001-5737-8811</orcidid></search><sort><creationdate>20171121</creationdate><title>Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation</title><author>Medeiros Da Cunha, Carolina M ; Perugini, Valeria ; Bernegger, Petra ; Centola, Matteo ; Barbero, Andrea ; Guildford, Anna L ; Santin, Matteo ; Banfi, Andrea ; Martin, Ivan ; Marsano, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-23b6d04780f88f7e50ca40deaa6b1cabcdab8fbceabf2946a8942b9a1e68c41e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angiogenesis</topic><topic>Antiangiogenics</topic><topic>Autografts</topic><topic>Cartilage</topic><topic>Chondrocytes</topic><topic>Chondrocytes - drug effects</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis</topic><topic>Chondrogenesis - drug effects</topic><topic>Collagen</topic><topic>collagen scaffold</topic><topic>dendron</topic><topic>Differentiation</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Hyaline Cartilage - drug effects</topic><topic>Hyaline Cartilage - metabolism</topic><topic>Implantation</topic><topic>nasal chondrocyte</topic><topic>Neovascularization, Pathologic - drug therapy</topic><topic>Neovascularization, Pathologic - metabolism</topic><topic>Ossification</topic><topic>Peptide Fragments - pharmacology</topic><topic>Peptides</topic><topic>Scaffolds</topic><topic>soluble VEGF receptor-2</topic><topic>Surgical implants</topic><topic>Transplantation</topic><topic>Transplants & implants</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular endothelial growth factor receptor 2</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - chemistry</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><topic>Vascular Endothelial Growth Factors - antagonists & inhibitors</topic><topic>Vascular Endothelial Growth Factors - metabolism</topic><topic>Vascular Endothelial Growth Factors - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medeiros Da Cunha, Carolina M</creatorcontrib><creatorcontrib>Perugini, Valeria</creatorcontrib><creatorcontrib>Bernegger, Petra</creatorcontrib><creatorcontrib>Centola, Matteo</creatorcontrib><creatorcontrib>Barbero, Andrea</creatorcontrib><creatorcontrib>Guildford, Anna L</creatorcontrib><creatorcontrib>Santin, Matteo</creatorcontrib><creatorcontrib>Banfi, Andrea</creatorcontrib><creatorcontrib>Martin, Ivan</creatorcontrib><creatorcontrib>Marsano, Anna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medeiros Da Cunha, Carolina M</au><au>Perugini, Valeria</au><au>Bernegger, Petra</au><au>Centola, Matteo</au><au>Barbero, Andrea</au><au>Guildford, Anna L</au><au>Santin, Matteo</au><au>Banfi, Andrea</au><au>Martin, Ivan</au><au>Marsano, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2017-11-21</date><risdate>2017</risdate><volume>18</volume><issue>11</issue><spage>2478</spage><pages>2478-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF) plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1) or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC) freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29160845</pmid><doi>10.3390/ijms18112478</doi><orcidid>https://orcid.org/0000-0001-6493-0432</orcidid><orcidid>https://orcid.org/0000-0001-5737-8811</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2017-11, Vol.18 (11), p.2478 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_89a3d5a6639441d49d30cc64b3c68cde |
source | PubMed (Medline); Access via ProQuest (Open Access) |
subjects | Angiogenesis Antiangiogenics Autografts Cartilage Chondrocytes Chondrocytes - drug effects Chondrocytes - metabolism Chondrogenesis Chondrogenesis - drug effects Collagen collagen scaffold dendron Differentiation Human Umbilical Vein Endothelial Cells Humans Hyaline Cartilage - drug effects Hyaline Cartilage - metabolism Implantation nasal chondrocyte Neovascularization, Pathologic - drug therapy Neovascularization, Pathologic - metabolism Ossification Peptide Fragments - pharmacology Peptides Scaffolds soluble VEGF receptor-2 Surgical implants Transplantation Transplants & implants Vascular endothelial growth factor Vascular endothelial growth factor receptor 2 Vascular Endothelial Growth Factor Receptor-2 - chemistry Vascular Endothelial Growth Factor Receptor-2 - metabolism Vascular Endothelial Growth Factors - antagonists & inhibitors Vascular Endothelial Growth Factors - metabolism Vascular Endothelial Growth Factors - pharmacology |
title | Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascular%20Endothelial%20Growth%20Factor%20Sequestration%20Enhances%20In%20Vivo%20Cartilage%20Formation&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Medeiros%20Da%20Cunha,%20Carolina%20M&rft.date=2017-11-21&rft.volume=18&rft.issue=11&rft.spage=2478&rft.pages=2478-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms18112478&rft_dat=%3Cproquest_doaj_%3E1966982578%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-23b6d04780f88f7e50ca40deaa6b1cabcdab8fbceabf2946a8942b9a1e68c41e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1977976506&rft_id=info:pmid/29160845&rfr_iscdi=true |