Loading…
From design to clinic: Engineered peptide nanomaterials for cancer immunotherapy
Immunotherapy has revolutionized the field of cancer therapy. Nanomaterials can further improve the efficacy and safety of immunotherapy because of their tunability and multifunctionality. Owing to their natural biocompatibility, diverse designs, and dynamic self-assembly, peptide-based nanomaterial...
Saved in:
Published in: | Frontiers in chemistry 2023-01, Vol.10, p.1107600-1107600 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Immunotherapy has revolutionized the field of cancer therapy. Nanomaterials can further improve the efficacy and safety of immunotherapy because of their tunability and multifunctionality. Owing to their natural biocompatibility, diverse designs, and dynamic self-assembly, peptide-based nanomaterials hold great potential as immunotherapeutic agents for many malignant cancers, with good immune response and safety. Over the past several decades, peptides have been developed as tumor antigens, effective antigen delivery carriers, and self-assembling adjuvants for cancer immunotherapy. In this review, we give a brief introduction to the use of peptide-based nanomaterials for cancer immunotherapy as antigens, carriers, and adjuvants, and to their current clinical applications. Overall, this review can facilitate further understanding of peptide-based nanomaterials for cancer immunotherapy and may pave the way for designing safe and efficient methods for future vaccines or immunotherapies. |
---|---|
ISSN: | 2296-2646 2296-2646 |
DOI: | 10.3389/fchem.2022.1107600 |