Loading…
Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica
A compact all-fiber pulsed coherent Doppler lidar (PCDL) for boundary layer wind measurement was developed by the Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences). It has been deployed at Zhongshan Station (69.4° S, 76.4° E) during the 2020 aus...
Saved in:
Published in: | Atmosphere 2023-05, Vol.14 (5), p.901 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-5a417446af149f4d32164497fb8ac81e0900ee7977b1b9cd00c2df48bc4ea23a3 |
container_end_page | |
container_issue | 5 |
container_start_page | 901 |
container_title | Atmosphere |
container_volume | 14 |
creator | Li, Hui Wang, Zhangjun Zhuang, Quanfeng Wang, Rui Huang, Wentao Chen, Chao Li, Xianxin Wang, Xiufen Xue, Boyang Yu, Yang Pan, Xin |
description | A compact all-fiber pulsed coherent Doppler lidar (PCDL) for boundary layer wind measurement was developed by the Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences). It has been deployed at Zhongshan Station (69.4° S, 76.4° E) during the 2020 austral summer season by the 36th Chinese National Antarctic Research Expedition (CHINARE) and started routine observation in January 2020. This system, based on the 1550 nm all-fiber components, employs a 100 mm telescope with a long focal length of 632.6 mm to emit and collect laser pulses. It provides the ability to measure vertically resolved wind fields with a spatial resolution of 30 m and a temporal resolution of 1 min; the maximum detection range is up to 1.5 km in Antarctica. Wind speed and direction inversion methods were introduced subsequently. Preliminary measurement results of wind profiles indicate that this Doppler lidar can be operated successfully in Antarctica. The synchronous observations between the lidar, anemometer, and radiosondes at Zhongshan station are presented and have good consistency with each other. The comparison results between the lidar and anemometer indicate a root mean square deviation (RMSD) of 0.98 m s−1 and 10.55° for wind speed and direction, respectively. The lidar continuous observations of wind profiles provide an opportunity to study the spatiotemporal variation of Antarctic wind with high resolutions, which is useful for further understanding of the atmosphere in Antarctic regions. |
doi_str_mv | 10.3390/atmos14050901 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_89ae111401f64ccab0f14af23743dce8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750887081</galeid><doaj_id>oai_doaj_org_article_89ae111401f64ccab0f14af23743dce8</doaj_id><sourcerecordid>A750887081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-5a417446af149f4d32164497fb8ac81e0900ee7977b1b9cd00c2df48bc4ea23a3</originalsourceid><addsrcrecordid>eNpVUU1rGzEUXEoLDUmOvQt67abSSrako-s2bcBQkyYEehFv9WHLrCVXkg-B_vi81KG0EkjiMTOaN6_r3jF6xbmmH6Htc2WCzqim7FV3NlDJeyE4f_3P-213WeuO4hKaD1ycdb9v_T43T9Z5gkI-5WNyUB7JCh59IQ8xObIuOcQppg25r88nJLKYpv46johYH6fqHVnmrS8-NfI5Hw4T1lcRZQg08nOb06ZukfSjQYs5fSCL1KDYFi1cdG8CoMDly33e3V9_uVt-61ffv94sF6ve8vms9TMQTAoxh8CEDsLxgc2F0DKMCqxiHjum3kst5chGbR2ldnBBqNEKDwMHft7dnHRdhp05lLjHHk2GaP4UctkYKGho8kZp8IxhjizMhbUwUvwUwsCl4M56hVrvT1qHkn8dfW1ml48loX0zKIapasEpoq5OqA2gaEwhtwIWt_P7aHPyGKk3CzmjSkmqGBL6E8GWXGvx4a9NRs3zgM1_A-ZPio2Yow</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819329430</pqid></control><display><type>article</type><title>Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica</title><source>Access via ProQuest (Open Access)</source><creator>Li, Hui ; Wang, Zhangjun ; Zhuang, Quanfeng ; Wang, Rui ; Huang, Wentao ; Chen, Chao ; Li, Xianxin ; Wang, Xiufen ; Xue, Boyang ; Yu, Yang ; Pan, Xin</creator><creatorcontrib>Li, Hui ; Wang, Zhangjun ; Zhuang, Quanfeng ; Wang, Rui ; Huang, Wentao ; Chen, Chao ; Li, Xianxin ; Wang, Xiufen ; Xue, Boyang ; Yu, Yang ; Pan, Xin</creatorcontrib><description>A compact all-fiber pulsed coherent Doppler lidar (PCDL) for boundary layer wind measurement was developed by the Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences). It has been deployed at Zhongshan Station (69.4° S, 76.4° E) during the 2020 austral summer season by the 36th Chinese National Antarctic Research Expedition (CHINARE) and started routine observation in January 2020. This system, based on the 1550 nm all-fiber components, employs a 100 mm telescope with a long focal length of 632.6 mm to emit and collect laser pulses. It provides the ability to measure vertically resolved wind fields with a spatial resolution of 30 m and a temporal resolution of 1 min; the maximum detection range is up to 1.5 km in Antarctica. Wind speed and direction inversion methods were introduced subsequently. Preliminary measurement results of wind profiles indicate that this Doppler lidar can be operated successfully in Antarctica. The synchronous observations between the lidar, anemometer, and radiosondes at Zhongshan station are presented and have good consistency with each other. The comparison results between the lidar and anemometer indicate a root mean square deviation (RMSD) of 0.98 m s−1 and 10.55° for wind speed and direction, respectively. The lidar continuous observations of wind profiles provide an opportunity to study the spatiotemporal variation of Antarctic wind with high resolutions, which is useful for further understanding of the atmosphere in Antarctic regions.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos14050901</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerosols ; Anemometers ; Antarctic expeditions ; Antarctic research ; Antarctic winds ; Antarctic zone ; Antarctica ; Antennas ; Atmospheric boundary layer ; boundary layer ; Boundary layer winds ; Boundary layers ; coherent Doppler lidar ; Datasets ; Direction ; Doppler effect ; Doppler lidar ; Doppler sonar ; Environmental aspects ; Expeditions ; Humidity ; Instrumentation ; Lasers ; Lidar ; Measurement ; Oceanographic instruments ; Optical radar ; Planetary boundary layer ; Radiosondes ; Receivers & amplifiers ; Remote sensing ; Remote sensing systems ; Research expeditions ; Resolution ; Spatial discrimination ; Spatial resolution ; Temperature ; Temporal resolution ; Transmitters ; Weather ; Weather forecasting ; Wind ; Wind fields ; Wind measurement ; Wind profiles ; Wind speed ; Winds</subject><ispartof>Atmosphere, 2023-05, Vol.14 (5), p.901</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-5a417446af149f4d32164497fb8ac81e0900ee7977b1b9cd00c2df48bc4ea23a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2819329430/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2819329430?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Zhangjun</creatorcontrib><creatorcontrib>Zhuang, Quanfeng</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Huang, Wentao</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Li, Xianxin</creatorcontrib><creatorcontrib>Wang, Xiufen</creatorcontrib><creatorcontrib>Xue, Boyang</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Pan, Xin</creatorcontrib><title>Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica</title><title>Atmosphere</title><description>A compact all-fiber pulsed coherent Doppler lidar (PCDL) for boundary layer wind measurement was developed by the Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences). It has been deployed at Zhongshan Station (69.4° S, 76.4° E) during the 2020 austral summer season by the 36th Chinese National Antarctic Research Expedition (CHINARE) and started routine observation in January 2020. This system, based on the 1550 nm all-fiber components, employs a 100 mm telescope with a long focal length of 632.6 mm to emit and collect laser pulses. It provides the ability to measure vertically resolved wind fields with a spatial resolution of 30 m and a temporal resolution of 1 min; the maximum detection range is up to 1.5 km in Antarctica. Wind speed and direction inversion methods were introduced subsequently. Preliminary measurement results of wind profiles indicate that this Doppler lidar can be operated successfully in Antarctica. The synchronous observations between the lidar, anemometer, and radiosondes at Zhongshan station are presented and have good consistency with each other. The comparison results between the lidar and anemometer indicate a root mean square deviation (RMSD) of 0.98 m s−1 and 10.55° for wind speed and direction, respectively. The lidar continuous observations of wind profiles provide an opportunity to study the spatiotemporal variation of Antarctic wind with high resolutions, which is useful for further understanding of the atmosphere in Antarctic regions.</description><subject>Aerosols</subject><subject>Anemometers</subject><subject>Antarctic expeditions</subject><subject>Antarctic research</subject><subject>Antarctic winds</subject><subject>Antarctic zone</subject><subject>Antarctica</subject><subject>Antennas</subject><subject>Atmospheric boundary layer</subject><subject>boundary layer</subject><subject>Boundary layer winds</subject><subject>Boundary layers</subject><subject>coherent Doppler lidar</subject><subject>Datasets</subject><subject>Direction</subject><subject>Doppler effect</subject><subject>Doppler lidar</subject><subject>Doppler sonar</subject><subject>Environmental aspects</subject><subject>Expeditions</subject><subject>Humidity</subject><subject>Instrumentation</subject><subject>Lasers</subject><subject>Lidar</subject><subject>Measurement</subject><subject>Oceanographic instruments</subject><subject>Optical radar</subject><subject>Planetary boundary layer</subject><subject>Radiosondes</subject><subject>Receivers & amplifiers</subject><subject>Remote sensing</subject><subject>Remote sensing systems</subject><subject>Research expeditions</subject><subject>Resolution</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Temperature</subject><subject>Temporal resolution</subject><subject>Transmitters</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Wind</subject><subject>Wind fields</subject><subject>Wind measurement</subject><subject>Wind profiles</subject><subject>Wind speed</subject><subject>Winds</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1rGzEUXEoLDUmOvQt67abSSrako-s2bcBQkyYEehFv9WHLrCVXkg-B_vi81KG0EkjiMTOaN6_r3jF6xbmmH6Htc2WCzqim7FV3NlDJeyE4f_3P-213WeuO4hKaD1ycdb9v_T43T9Z5gkI-5WNyUB7JCh59IQ8xObIuOcQppg25r88nJLKYpv46johYH6fqHVnmrS8-NfI5Hw4T1lcRZQg08nOb06ZukfSjQYs5fSCL1KDYFi1cdG8CoMDly33e3V9_uVt-61ffv94sF6ve8vms9TMQTAoxh8CEDsLxgc2F0DKMCqxiHjum3kst5chGbR2ldnBBqNEKDwMHft7dnHRdhp05lLjHHk2GaP4UctkYKGho8kZp8IxhjizMhbUwUvwUwsCl4M56hVrvT1qHkn8dfW1ml48loX0zKIapasEpoq5OqA2gaEwhtwIWt_P7aHPyGKk3CzmjSkmqGBL6E8GWXGvx4a9NRs3zgM1_A-ZPio2Yow</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Li, Hui</creator><creator>Wang, Zhangjun</creator><creator>Zhuang, Quanfeng</creator><creator>Wang, Rui</creator><creator>Huang, Wentao</creator><creator>Chen, Chao</creator><creator>Li, Xianxin</creator><creator>Wang, Xiufen</creator><creator>Xue, Boyang</creator><creator>Yu, Yang</creator><creator>Pan, Xin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20230501</creationdate><title>Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica</title><author>Li, Hui ; Wang, Zhangjun ; Zhuang, Quanfeng ; Wang, Rui ; Huang, Wentao ; Chen, Chao ; Li, Xianxin ; Wang, Xiufen ; Xue, Boyang ; Yu, Yang ; Pan, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-5a417446af149f4d32164497fb8ac81e0900ee7977b1b9cd00c2df48bc4ea23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>Anemometers</topic><topic>Antarctic expeditions</topic><topic>Antarctic research</topic><topic>Antarctic winds</topic><topic>Antarctic zone</topic><topic>Antarctica</topic><topic>Antennas</topic><topic>Atmospheric boundary layer</topic><topic>boundary layer</topic><topic>Boundary layer winds</topic><topic>Boundary layers</topic><topic>coherent Doppler lidar</topic><topic>Datasets</topic><topic>Direction</topic><topic>Doppler effect</topic><topic>Doppler lidar</topic><topic>Doppler sonar</topic><topic>Environmental aspects</topic><topic>Expeditions</topic><topic>Humidity</topic><topic>Instrumentation</topic><topic>Lasers</topic><topic>Lidar</topic><topic>Measurement</topic><topic>Oceanographic instruments</topic><topic>Optical radar</topic><topic>Planetary boundary layer</topic><topic>Radiosondes</topic><topic>Receivers & amplifiers</topic><topic>Remote sensing</topic><topic>Remote sensing systems</topic><topic>Research expeditions</topic><topic>Resolution</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Temperature</topic><topic>Temporal resolution</topic><topic>Transmitters</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Wind</topic><topic>Wind fields</topic><topic>Wind measurement</topic><topic>Wind profiles</topic><topic>Wind speed</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Zhangjun</creatorcontrib><creatorcontrib>Zhuang, Quanfeng</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Huang, Wentao</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Li, Xianxin</creatorcontrib><creatorcontrib>Wang, Xiufen</creatorcontrib><creatorcontrib>Xue, Boyang</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Pan, Xin</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hui</au><au>Wang, Zhangjun</au><au>Zhuang, Quanfeng</au><au>Wang, Rui</au><au>Huang, Wentao</au><au>Chen, Chao</au><au>Li, Xianxin</au><au>Wang, Xiufen</au><au>Xue, Boyang</au><au>Yu, Yang</au><au>Pan, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica</atitle><jtitle>Atmosphere</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>14</volume><issue>5</issue><spage>901</spage><pages>901-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>A compact all-fiber pulsed coherent Doppler lidar (PCDL) for boundary layer wind measurement was developed by the Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences). It has been deployed at Zhongshan Station (69.4° S, 76.4° E) during the 2020 austral summer season by the 36th Chinese National Antarctic Research Expedition (CHINARE) and started routine observation in January 2020. This system, based on the 1550 nm all-fiber components, employs a 100 mm telescope with a long focal length of 632.6 mm to emit and collect laser pulses. It provides the ability to measure vertically resolved wind fields with a spatial resolution of 30 m and a temporal resolution of 1 min; the maximum detection range is up to 1.5 km in Antarctica. Wind speed and direction inversion methods were introduced subsequently. Preliminary measurement results of wind profiles indicate that this Doppler lidar can be operated successfully in Antarctica. The synchronous observations between the lidar, anemometer, and radiosondes at Zhongshan station are presented and have good consistency with each other. The comparison results between the lidar and anemometer indicate a root mean square deviation (RMSD) of 0.98 m s−1 and 10.55° for wind speed and direction, respectively. The lidar continuous observations of wind profiles provide an opportunity to study the spatiotemporal variation of Antarctic wind with high resolutions, which is useful for further understanding of the atmosphere in Antarctic regions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos14050901</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4433 |
ispartof | Atmosphere, 2023-05, Vol.14 (5), p.901 |
issn | 2073-4433 2073-4433 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_89ae111401f64ccab0f14af23743dce8 |
source | Access via ProQuest (Open Access) |
subjects | Aerosols Anemometers Antarctic expeditions Antarctic research Antarctic winds Antarctic zone Antarctica Antennas Atmospheric boundary layer boundary layer Boundary layer winds Boundary layers coherent Doppler lidar Datasets Direction Doppler effect Doppler lidar Doppler sonar Environmental aspects Expeditions Humidity Instrumentation Lasers Lidar Measurement Oceanographic instruments Optical radar Planetary boundary layer Radiosondes Receivers & amplifiers Remote sensing Remote sensing systems Research expeditions Resolution Spatial discrimination Spatial resolution Temperature Temporal resolution Transmitters Weather Weather forecasting Wind Wind fields Wind measurement Wind profiles Wind speed Winds |
title | Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20Polar%20Boundary%20Layer%20Wind%20Profiling%20Using%20an%20All-Fiber%20Pulsed%20Coherent%20Doppler%20Lidar%20at%20Zhongshan%20Station,%20Antarctica&rft.jtitle=Atmosphere&rft.au=Li,%20Hui&rft.date=2023-05-01&rft.volume=14&rft.issue=5&rft.spage=901&rft.pages=901-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos14050901&rft_dat=%3Cgale_doaj_%3EA750887081%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-5a417446af149f4d32164497fb8ac81e0900ee7977b1b9cd00c2df48bc4ea23a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819329430&rft_id=info:pmid/&rft_galeid=A750887081&rfr_iscdi=true |