Loading…

Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica

A compact all-fiber pulsed coherent Doppler lidar (PCDL) for boundary layer wind measurement was developed by the Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences). It has been deployed at Zhongshan Station (69.4° S, 76.4° E) during the 2020 aus...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2023-05, Vol.14 (5), p.901
Main Authors: Li, Hui, Wang, Zhangjun, Zhuang, Quanfeng, Wang, Rui, Huang, Wentao, Chen, Chao, Li, Xianxin, Wang, Xiufen, Xue, Boyang, Yu, Yang, Pan, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c365t-5a417446af149f4d32164497fb8ac81e0900ee7977b1b9cd00c2df48bc4ea23a3
container_end_page
container_issue 5
container_start_page 901
container_title Atmosphere
container_volume 14
creator Li, Hui
Wang, Zhangjun
Zhuang, Quanfeng
Wang, Rui
Huang, Wentao
Chen, Chao
Li, Xianxin
Wang, Xiufen
Xue, Boyang
Yu, Yang
Pan, Xin
description A compact all-fiber pulsed coherent Doppler lidar (PCDL) for boundary layer wind measurement was developed by the Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences). It has been deployed at Zhongshan Station (69.4° S, 76.4° E) during the 2020 austral summer season by the 36th Chinese National Antarctic Research Expedition (CHINARE) and started routine observation in January 2020. This system, based on the 1550 nm all-fiber components, employs a 100 mm telescope with a long focal length of 632.6 mm to emit and collect laser pulses. It provides the ability to measure vertically resolved wind fields with a spatial resolution of 30 m and a temporal resolution of 1 min; the maximum detection range is up to 1.5 km in Antarctica. Wind speed and direction inversion methods were introduced subsequently. Preliminary measurement results of wind profiles indicate that this Doppler lidar can be operated successfully in Antarctica. The synchronous observations between the lidar, anemometer, and radiosondes at Zhongshan station are presented and have good consistency with each other. The comparison results between the lidar and anemometer indicate a root mean square deviation (RMSD) of 0.98 m s−1 and 10.55° for wind speed and direction, respectively. The lidar continuous observations of wind profiles provide an opportunity to study the spatiotemporal variation of Antarctic wind with high resolutions, which is useful for further understanding of the atmosphere in Antarctic regions.
doi_str_mv 10.3390/atmos14050901
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_89ae111401f64ccab0f14af23743dce8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750887081</galeid><doaj_id>oai_doaj_org_article_89ae111401f64ccab0f14af23743dce8</doaj_id><sourcerecordid>A750887081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-5a417446af149f4d32164497fb8ac81e0900ee7977b1b9cd00c2df48bc4ea23a3</originalsourceid><addsrcrecordid>eNpVUU1rGzEUXEoLDUmOvQt67abSSrako-s2bcBQkyYEehFv9WHLrCVXkg-B_vi81KG0EkjiMTOaN6_r3jF6xbmmH6Htc2WCzqim7FV3NlDJeyE4f_3P-213WeuO4hKaD1ycdb9v_T43T9Z5gkI-5WNyUB7JCh59IQ8xObIuOcQppg25r88nJLKYpv46johYH6fqHVnmrS8-NfI5Hw4T1lcRZQg08nOb06ZukfSjQYs5fSCL1KDYFi1cdG8CoMDly33e3V9_uVt-61ffv94sF6ve8vms9TMQTAoxh8CEDsLxgc2F0DKMCqxiHjum3kst5chGbR2ldnBBqNEKDwMHft7dnHRdhp05lLjHHk2GaP4UctkYKGho8kZp8IxhjizMhbUwUvwUwsCl4M56hVrvT1qHkn8dfW1ml48loX0zKIapasEpoq5OqA2gaEwhtwIWt_P7aHPyGKk3CzmjSkmqGBL6E8GWXGvx4a9NRs3zgM1_A-ZPio2Yow</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819329430</pqid></control><display><type>article</type><title>Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica</title><source>Access via ProQuest (Open Access)</source><creator>Li, Hui ; Wang, Zhangjun ; Zhuang, Quanfeng ; Wang, Rui ; Huang, Wentao ; Chen, Chao ; Li, Xianxin ; Wang, Xiufen ; Xue, Boyang ; Yu, Yang ; Pan, Xin</creator><creatorcontrib>Li, Hui ; Wang, Zhangjun ; Zhuang, Quanfeng ; Wang, Rui ; Huang, Wentao ; Chen, Chao ; Li, Xianxin ; Wang, Xiufen ; Xue, Boyang ; Yu, Yang ; Pan, Xin</creatorcontrib><description>A compact all-fiber pulsed coherent Doppler lidar (PCDL) for boundary layer wind measurement was developed by the Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences). It has been deployed at Zhongshan Station (69.4° S, 76.4° E) during the 2020 austral summer season by the 36th Chinese National Antarctic Research Expedition (CHINARE) and started routine observation in January 2020. This system, based on the 1550 nm all-fiber components, employs a 100 mm telescope with a long focal length of 632.6 mm to emit and collect laser pulses. It provides the ability to measure vertically resolved wind fields with a spatial resolution of 30 m and a temporal resolution of 1 min; the maximum detection range is up to 1.5 km in Antarctica. Wind speed and direction inversion methods were introduced subsequently. Preliminary measurement results of wind profiles indicate that this Doppler lidar can be operated successfully in Antarctica. The synchronous observations between the lidar, anemometer, and radiosondes at Zhongshan station are presented and have good consistency with each other. The comparison results between the lidar and anemometer indicate a root mean square deviation (RMSD) of 0.98 m s−1 and 10.55° for wind speed and direction, respectively. The lidar continuous observations of wind profiles provide an opportunity to study the spatiotemporal variation of Antarctic wind with high resolutions, which is useful for further understanding of the atmosphere in Antarctic regions.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos14050901</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerosols ; Anemometers ; Antarctic expeditions ; Antarctic research ; Antarctic winds ; Antarctic zone ; Antarctica ; Antennas ; Atmospheric boundary layer ; boundary layer ; Boundary layer winds ; Boundary layers ; coherent Doppler lidar ; Datasets ; Direction ; Doppler effect ; Doppler lidar ; Doppler sonar ; Environmental aspects ; Expeditions ; Humidity ; Instrumentation ; Lasers ; Lidar ; Measurement ; Oceanographic instruments ; Optical radar ; Planetary boundary layer ; Radiosondes ; Receivers &amp; amplifiers ; Remote sensing ; Remote sensing systems ; Research expeditions ; Resolution ; Spatial discrimination ; Spatial resolution ; Temperature ; Temporal resolution ; Transmitters ; Weather ; Weather forecasting ; Wind ; Wind fields ; Wind measurement ; Wind profiles ; Wind speed ; Winds</subject><ispartof>Atmosphere, 2023-05, Vol.14 (5), p.901</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-5a417446af149f4d32164497fb8ac81e0900ee7977b1b9cd00c2df48bc4ea23a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2819329430/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2819329430?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Zhangjun</creatorcontrib><creatorcontrib>Zhuang, Quanfeng</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Huang, Wentao</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Li, Xianxin</creatorcontrib><creatorcontrib>Wang, Xiufen</creatorcontrib><creatorcontrib>Xue, Boyang</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Pan, Xin</creatorcontrib><title>Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica</title><title>Atmosphere</title><description>A compact all-fiber pulsed coherent Doppler lidar (PCDL) for boundary layer wind measurement was developed by the Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences). It has been deployed at Zhongshan Station (69.4° S, 76.4° E) during the 2020 austral summer season by the 36th Chinese National Antarctic Research Expedition (CHINARE) and started routine observation in January 2020. This system, based on the 1550 nm all-fiber components, employs a 100 mm telescope with a long focal length of 632.6 mm to emit and collect laser pulses. It provides the ability to measure vertically resolved wind fields with a spatial resolution of 30 m and a temporal resolution of 1 min; the maximum detection range is up to 1.5 km in Antarctica. Wind speed and direction inversion methods were introduced subsequently. Preliminary measurement results of wind profiles indicate that this Doppler lidar can be operated successfully in Antarctica. The synchronous observations between the lidar, anemometer, and radiosondes at Zhongshan station are presented and have good consistency with each other. The comparison results between the lidar and anemometer indicate a root mean square deviation (RMSD) of 0.98 m s−1 and 10.55° for wind speed and direction, respectively. The lidar continuous observations of wind profiles provide an opportunity to study the spatiotemporal variation of Antarctic wind with high resolutions, which is useful for further understanding of the atmosphere in Antarctic regions.</description><subject>Aerosols</subject><subject>Anemometers</subject><subject>Antarctic expeditions</subject><subject>Antarctic research</subject><subject>Antarctic winds</subject><subject>Antarctic zone</subject><subject>Antarctica</subject><subject>Antennas</subject><subject>Atmospheric boundary layer</subject><subject>boundary layer</subject><subject>Boundary layer winds</subject><subject>Boundary layers</subject><subject>coherent Doppler lidar</subject><subject>Datasets</subject><subject>Direction</subject><subject>Doppler effect</subject><subject>Doppler lidar</subject><subject>Doppler sonar</subject><subject>Environmental aspects</subject><subject>Expeditions</subject><subject>Humidity</subject><subject>Instrumentation</subject><subject>Lasers</subject><subject>Lidar</subject><subject>Measurement</subject><subject>Oceanographic instruments</subject><subject>Optical radar</subject><subject>Planetary boundary layer</subject><subject>Radiosondes</subject><subject>Receivers &amp; amplifiers</subject><subject>Remote sensing</subject><subject>Remote sensing systems</subject><subject>Research expeditions</subject><subject>Resolution</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Temperature</subject><subject>Temporal resolution</subject><subject>Transmitters</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Wind</subject><subject>Wind fields</subject><subject>Wind measurement</subject><subject>Wind profiles</subject><subject>Wind speed</subject><subject>Winds</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1rGzEUXEoLDUmOvQt67abSSrako-s2bcBQkyYEehFv9WHLrCVXkg-B_vi81KG0EkjiMTOaN6_r3jF6xbmmH6Htc2WCzqim7FV3NlDJeyE4f_3P-213WeuO4hKaD1ycdb9v_T43T9Z5gkI-5WNyUB7JCh59IQ8xObIuOcQppg25r88nJLKYpv46johYH6fqHVnmrS8-NfI5Hw4T1lcRZQg08nOb06ZukfSjQYs5fSCL1KDYFi1cdG8CoMDly33e3V9_uVt-61ffv94sF6ve8vms9TMQTAoxh8CEDsLxgc2F0DKMCqxiHjum3kst5chGbR2ldnBBqNEKDwMHft7dnHRdhp05lLjHHk2GaP4UctkYKGho8kZp8IxhjizMhbUwUvwUwsCl4M56hVrvT1qHkn8dfW1ml48loX0zKIapasEpoq5OqA2gaEwhtwIWt_P7aHPyGKk3CzmjSkmqGBL6E8GWXGvx4a9NRs3zgM1_A-ZPio2Yow</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Li, Hui</creator><creator>Wang, Zhangjun</creator><creator>Zhuang, Quanfeng</creator><creator>Wang, Rui</creator><creator>Huang, Wentao</creator><creator>Chen, Chao</creator><creator>Li, Xianxin</creator><creator>Wang, Xiufen</creator><creator>Xue, Boyang</creator><creator>Yu, Yang</creator><creator>Pan, Xin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20230501</creationdate><title>Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica</title><author>Li, Hui ; Wang, Zhangjun ; Zhuang, Quanfeng ; Wang, Rui ; Huang, Wentao ; Chen, Chao ; Li, Xianxin ; Wang, Xiufen ; Xue, Boyang ; Yu, Yang ; Pan, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-5a417446af149f4d32164497fb8ac81e0900ee7977b1b9cd00c2df48bc4ea23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerosols</topic><topic>Anemometers</topic><topic>Antarctic expeditions</topic><topic>Antarctic research</topic><topic>Antarctic winds</topic><topic>Antarctic zone</topic><topic>Antarctica</topic><topic>Antennas</topic><topic>Atmospheric boundary layer</topic><topic>boundary layer</topic><topic>Boundary layer winds</topic><topic>Boundary layers</topic><topic>coherent Doppler lidar</topic><topic>Datasets</topic><topic>Direction</topic><topic>Doppler effect</topic><topic>Doppler lidar</topic><topic>Doppler sonar</topic><topic>Environmental aspects</topic><topic>Expeditions</topic><topic>Humidity</topic><topic>Instrumentation</topic><topic>Lasers</topic><topic>Lidar</topic><topic>Measurement</topic><topic>Oceanographic instruments</topic><topic>Optical radar</topic><topic>Planetary boundary layer</topic><topic>Radiosondes</topic><topic>Receivers &amp; amplifiers</topic><topic>Remote sensing</topic><topic>Remote sensing systems</topic><topic>Research expeditions</topic><topic>Resolution</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Temperature</topic><topic>Temporal resolution</topic><topic>Transmitters</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Wind</topic><topic>Wind fields</topic><topic>Wind measurement</topic><topic>Wind profiles</topic><topic>Wind speed</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Zhangjun</creatorcontrib><creatorcontrib>Zhuang, Quanfeng</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Huang, Wentao</creatorcontrib><creatorcontrib>Chen, Chao</creatorcontrib><creatorcontrib>Li, Xianxin</creatorcontrib><creatorcontrib>Wang, Xiufen</creatorcontrib><creatorcontrib>Xue, Boyang</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Pan, Xin</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hui</au><au>Wang, Zhangjun</au><au>Zhuang, Quanfeng</au><au>Wang, Rui</au><au>Huang, Wentao</au><au>Chen, Chao</au><au>Li, Xianxin</au><au>Wang, Xiufen</au><au>Xue, Boyang</au><au>Yu, Yang</au><au>Pan, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica</atitle><jtitle>Atmosphere</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>14</volume><issue>5</issue><spage>901</spage><pages>901-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>A compact all-fiber pulsed coherent Doppler lidar (PCDL) for boundary layer wind measurement was developed by the Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences). It has been deployed at Zhongshan Station (69.4° S, 76.4° E) during the 2020 austral summer season by the 36th Chinese National Antarctic Research Expedition (CHINARE) and started routine observation in January 2020. This system, based on the 1550 nm all-fiber components, employs a 100 mm telescope with a long focal length of 632.6 mm to emit and collect laser pulses. It provides the ability to measure vertically resolved wind fields with a spatial resolution of 30 m and a temporal resolution of 1 min; the maximum detection range is up to 1.5 km in Antarctica. Wind speed and direction inversion methods were introduced subsequently. Preliminary measurement results of wind profiles indicate that this Doppler lidar can be operated successfully in Antarctica. The synchronous observations between the lidar, anemometer, and radiosondes at Zhongshan station are presented and have good consistency with each other. The comparison results between the lidar and anemometer indicate a root mean square deviation (RMSD) of 0.98 m s−1 and 10.55° for wind speed and direction, respectively. The lidar continuous observations of wind profiles provide an opportunity to study the spatiotemporal variation of Antarctic wind with high resolutions, which is useful for further understanding of the atmosphere in Antarctic regions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos14050901</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4433
ispartof Atmosphere, 2023-05, Vol.14 (5), p.901
issn 2073-4433
2073-4433
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_89ae111401f64ccab0f14af23743dce8
source Access via ProQuest (Open Access)
subjects Aerosols
Anemometers
Antarctic expeditions
Antarctic research
Antarctic winds
Antarctic zone
Antarctica
Antennas
Atmospheric boundary layer
boundary layer
Boundary layer winds
Boundary layers
coherent Doppler lidar
Datasets
Direction
Doppler effect
Doppler lidar
Doppler sonar
Environmental aspects
Expeditions
Humidity
Instrumentation
Lasers
Lidar
Measurement
Oceanographic instruments
Optical radar
Planetary boundary layer
Radiosondes
Receivers & amplifiers
Remote sensing
Remote sensing systems
Research expeditions
Resolution
Spatial discrimination
Spatial resolution
Temperature
Temporal resolution
Transmitters
Weather
Weather forecasting
Wind
Wind fields
Wind measurement
Wind profiles
Wind speed
Winds
title Remote Polar Boundary Layer Wind Profiling Using an All-Fiber Pulsed Coherent Doppler Lidar at Zhongshan Station, Antarctica
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20Polar%20Boundary%20Layer%20Wind%20Profiling%20Using%20an%20All-Fiber%20Pulsed%20Coherent%20Doppler%20Lidar%20at%20Zhongshan%20Station,%20Antarctica&rft.jtitle=Atmosphere&rft.au=Li,%20Hui&rft.date=2023-05-01&rft.volume=14&rft.issue=5&rft.spage=901&rft.pages=901-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos14050901&rft_dat=%3Cgale_doaj_%3EA750887081%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-5a417446af149f4d32164497fb8ac81e0900ee7977b1b9cd00c2df48bc4ea23a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819329430&rft_id=info:pmid/&rft_galeid=A750887081&rfr_iscdi=true