Loading…

Eco-Friendly One Pot Synthesis of Zinc Oxide Nanoparticles Using Catkin Extract of Piper longum: In Vitro Antibacterial, Antioxidant and Antibiofilm Potential against Multi Drug Resistant Enteroaggregative E. coli

Enteroaggregative Escherichia coli (EAEC) is a neglected, though emerging, bacterial pathogen associated with gastrointestinal illnesses worldwide. Recently, a surprising surge in the multi-drug resistance pattern among EAEC strains has been observed on a global scale; hence, emphasis has been given...

Full description

Saved in:
Bibliographic Details
Published in:Medical sciences forum 2023-03, Vol.21 (1), p.14
Main Authors: Varsha Unni, Padikkamannil Abishad, Pokkittath Radhakrishnan Arya, Bibin Mohan, Sanis Juliet, Lijo John, Prejit Nambiar, Valil Kunjukunju Vinod, Asha Karthikeyan, Nitin Vasantrao Kurkure, Sukhadeo Baliram Barbuddhe, Deepak Bhiwa Rawool, Jess Vergis
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enteroaggregative Escherichia coli (EAEC) is a neglected, though emerging, bacterial pathogen associated with gastrointestinal illnesses worldwide. Recently, a surprising surge in the multi-drug resistance pattern among EAEC strains has been observed on a global scale; hence, emphasis has been given to adjuvant therapies to combat this nagging public health threat. This study assessed the antibacterial efficacy of ZnO NPs synthesised using the aqueous extract of Piper longum catkin against multi-drug resistant (MDR) strains of EAEC. Initially, the synthesis of ZnO NPs was confirmed via UV-Vis spectroscopy and Fourier transform infra-red spectroscopy (FTIR) analysis. The thermal stability of ZnO NPs was evidenced by TGA/DTA, while PXRD analysis revealed a hexagonal wurtzite crystalline structure, which was then confirmed by electron microscopy. The minimum inhibitory concentration and minimum bactericidal concentration of the bio-fabricated ZnO NPs, determined via microbroth dilution technique against MDR-EAEC (n = 3) strains, was revealed to be 125 μg/mL and 250 μg/mL, respectively. In addition, the ZnO NPs were found to be variably stable and safe. The green synthesised ZnO NPs exhibited a concentration-dependent antioxidant activity and inhibited the biofilm forming ability of the tested MDR-EAEC strains. Overall, this study revealed an eco-friendly one-pot synthesis of ZnO NPs, which could be used as a fruitful antimicrobial substitute against MDR-EAEC strains.
ISSN:2673-9992
DOI:10.3390/ECB2023-14269