Loading…
Lipid core nanoparticles resembling low-density lipoprotein and regression of atherosclerotic lesions: effects of particle size
Particles are usually polydispersed and size is an important feature for lipid-based drug delivery systems in order to optimize cell-particle interactions as to pharmacologic action and toxicity. Lipid nanoparticles (LDE) with composition similar to that of low-density lipoprotein carrying paclitaxe...
Saved in:
Published in: | Brazilian journal of medical and biological research 2018-03, Vol.51 (3), p.1-8 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Particles are usually polydispersed and size is an important feature for lipid-based drug delivery systems in order to optimize cell-particle interactions as to pharmacologic action and toxicity. Lipid nanoparticles (LDE) with composition similar to that of low-density lipoprotein carrying paclitaxel were shown to markedly reduce atherosclerosis lesions induced in rabbits by cholesterol feeding. The aim of this study was to test whether two LDE fractions, one with small (20-60 nm) and the other with large (60-100 nm) particles, had different actions on the atherosclerotic lesions. The two LDE-paclitaxel fractions, prepared by microfluidization, were separated by density gradient ultracentrifugation and injected (4 mg/body weight, intravenously once a week) into two groups of rabbits previously fed cholesterol for 4 weeks. A group of cholesterol-fed animals injected with saline solution was used as control to assess lesion reduction with treatment. After the treatment period, the animals were euthanized for analysis. After treatment, both the small and large nanoparticle preparations of LDE-paclitaxel had equally strong anti-atherosclerosis action. Both reduced lesion extension in the aorta by roughly 50%, decreased the intima width by 75% and the macrophage presence in the intima by 50%. The two preparations also showed similar toxicity profile. In conclusion, within the 20-100 nm range, size is apparently not an important feature regarding the LDE nanoparticle system and perhaps other solid lipid-based systems. |
---|---|
ISSN: | 0100-879X 1414-431X 1414-431X |
DOI: | 10.1590/1414-431X20177090 |