Loading…
Transcending the challenge of evolving resistance mechanisms in Pseudomonas aeruginosa through β-lactam-enhancer-mechanism-based cefepime/zidebactam
Multi-drug resistant (MDR) harbor a complex array of β-lactamases and non-enzymatic resistance mechanisms. In this study, the activity of a β-lactam/β-lactam-enhancer, cefepime/zidebactam, and novel β-lactam/β-lactamase inhibitor combinations was determined against an MDR phenotype-enriched, challen...
Saved in:
Published in: | mBio 2023-12, Vol.14 (6), p.e0111823 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multi-drug resistant (MDR)
harbor a complex array of β-lactamases and non-enzymatic resistance mechanisms. In this study, the activity of a β-lactam/β-lactam-enhancer, cefepime/zidebactam, and novel β-lactam/β-lactamase inhibitor combinations was determined against an MDR phenotype-enriched, challenge panel of
(
= 108). Isolates were multi-clonal as they belonged to at least 29 distinct sequence types (STs) and harbored metallo-β-lactamases, serine β-lactamases, penicillin binding protein (PBP) mutations, and other non-enzymatic resistance mechanisms. Ceftazidime/avibactam, ceftolozane/tazobactam, imipenem/relebactam, and cefepime/taniborbactam demonstrated MIC
s of >128 mg/L, while cefepime/zidebactam MIC
was 16 mg/L. In a neutropenic-murine lung infection model, a cefepime/zidebactam human epithelial-lining fluid-simulated regimen achieved or exceeded a translational end point of 1-log
kill for the isolates with elevated cefepime/zidebactam MICs (16-32 mg/L), harboring VIM-2 or KPC-2 and alterations in PBP2 and PBP3. In the same model, to assess the impact of zidebactam on the pharmacodynamic (PD) requirement of cefepime, dose-fractionation studies were undertaken employing cefepime-susceptible
isolates. Administered alone, cefepime required 47%-68%
T >MIC for stasis to ~1 log
kill effect, while cefepime in the presence of zidebactam required just 8%-16% for >2 log
kill effect, thus, providing the pharmacokinetic/PD basis for in vivo efficacy of cefepime/zidebactam against isolates with MICs up to 32 mg/L. Unlike β-lactam/β-lactamase inhibitors, β-lactam enhancer mechanism-based cefepime/zidebactam shows a potential to transcend the challenge of ever-evolving resistance mechanisms by targeting multiple PBPs and overcoming diverse β-lactamases including carbapenemases in
.
Compared to other genera of Gram-negative pathogens,
is adept in acquiring complex non-enzymatic and enzymatic resistance mechanisms thus remaining a challenge to even novel antibiotics including recently developed β-lactam and β-lactamase inhibitor combinations. This study shows that the novel β-lactam enhancer approach enables cefepime/zidebactam to overcome both non-enzymatic and enzymatic resistance mechanisms associated with a challenging panel of
. This study highlights that the β-lactam enhancer mechanism is a promising alternative to the conventional β-lactam/β-lactamase inhibitor approach in combating ever-evolving MDR
. |
---|---|
ISSN: | 2150-7511 2150-7511 |
DOI: | 10.1128/mbio.01118-23 |