Loading…
Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light
A general approach to promote IR light-driven CO 2 reduction within ultrathin Cu-based hydrotalcite-like hydroxy salts is presented. Associated band structures and optical properties of the Cu-based materials are first predicted by theory. Subsequently, Cu 4 (SO 4 )(OH) 6 nanosheets were synthesized...
Saved in:
Published in: | Nature communications 2023-07, Vol.14 (1), p.4034-4034, Article 4034 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-cc371dbb882e64c5f3258b50cd668763f96b0b0cf6fa8494b6691ea3a0afefbf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-cc371dbb882e64c5f3258b50cd668763f96b0b0cf6fa8494b6691ea3a0afefbf3 |
container_end_page | 4034 |
container_issue | 1 |
container_start_page | 4034 |
container_title | Nature communications |
container_volume | 14 |
creator | Li, Xiaodong Li, Li Chen, Guangbo Chu, Xingyuan Liu, Xiaohui Naisa, Chandrasekhar Pohl, Darius Löffler, Markus Feng, Xinliang |
description | A general approach to promote IR light-driven CO
2
reduction within ultrathin Cu-based hydrotalcite-like hydroxy salts is presented. Associated band structures and optical properties of the Cu-based materials are first predicted by theory. Subsequently, Cu
4
(SO
4
)(OH)
6
nanosheets were synthesized and are found to undergo cascaded electron transfer processes based on
d
-
d
orbital transitions under infrared light irradiation. The obtained samples exhibit excellent activity for IR light-driven CO
2
reduction, with a production rate of 21.95 and 4.11 μmol g
−1
h
−1
for CO and CH
4
, respectively, surpassing most reported catalysts under the same reaction conditions. X-ray absorption spectroscopy and in situ Fourier-transform infrared spectroscopy are used to track the evolution of the catalytic sites and intermediates to understand the photocatalytic mechanism. Similar ultrathin catalysts are also investigated to explore the generality of the proposed electron transfer approach. Our findings illustrate that abundant transition metal complexes hold great promise for IR light-responsive photocatalysis.
This study demonstrates the effectiveness and generality of utilizing ultrathin Cu-based hydrotalcite-like hydroxy salts as catalysts for infrared light-driven CO
2
reduction based on their d-d orbital transition mechanism. |
doi_str_mv | 10.1038/s41467-023-39666-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_89e35736a6464f10a3528d0daa4838f5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_89e35736a6464f10a3528d0daa4838f5</doaj_id><sourcerecordid>2835278925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-cc371dbb882e64c5f3258b50cd668763f96b0b0cf6fa8494b6691ea3a0afefbf3</originalsourceid><addsrcrecordid>eNp9kstuFDEQRVsIRKKQH2BliQ2bBr_aXV6haMQjUqRsYG352eNRjz3YPZHm7_GkIyAs8MZW1b2nSuXqurcEfyCYwcfKCRdjjynrmRRC9PhFd0kxJz0ZKXv51_uiu651h9thkgDnr7sLNnIiAYbLzt1Y62uNaUIHXeJy6kMuJjrnE3K9Q0vRqcYl5lRRy6DDNi_Z6kXPpyVatLmnqHh3tGcFciU-NJ85oZhC0S2B5jhtlzfdq6Dn6q-f7qvux5fP3zff-rv7r7ebm7veDgSW3lo2EmcMAPWC2yEwOoAZsHVCwChYkMJgg20QQQOX3AghiddMYx18MIFddbcr12W9U4cS97qcVNZRPQZymZQure3ZK5CeDSMTWnDBA8GaDRQcdlpzYBCGxvq0sg5Hs_fO-tRGMT-DPs-kuFVTflDtdyhIKRrh_ROh5J9HXxe1j9X6edbJ52NVFFrNESQ9F3v3j3SXjyW1WZ1VnAlghDYVXVW25FqLD7-7IfhcFtS6FKothXpcCoWbia2m2sRp8uUP-j-uXzXzuV4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834368312</pqid></control><display><type>article</type><title>Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Li, Xiaodong ; Li, Li ; Chen, Guangbo ; Chu, Xingyuan ; Liu, Xiaohui ; Naisa, Chandrasekhar ; Pohl, Darius ; Löffler, Markus ; Feng, Xinliang</creator><creatorcontrib>Li, Xiaodong ; Li, Li ; Chen, Guangbo ; Chu, Xingyuan ; Liu, Xiaohui ; Naisa, Chandrasekhar ; Pohl, Darius ; Löffler, Markus ; Feng, Xinliang</creatorcontrib><description>A general approach to promote IR light-driven CO
2
reduction within ultrathin Cu-based hydrotalcite-like hydroxy salts is presented. Associated band structures and optical properties of the Cu-based materials are first predicted by theory. Subsequently, Cu
4
(SO
4
)(OH)
6
nanosheets were synthesized and are found to undergo cascaded electron transfer processes based on
d
-
d
orbital transitions under infrared light irradiation. The obtained samples exhibit excellent activity for IR light-driven CO
2
reduction, with a production rate of 21.95 and 4.11 μmol g
−1
h
−1
for CO and CH
4
, respectively, surpassing most reported catalysts under the same reaction conditions. X-ray absorption spectroscopy and in situ Fourier-transform infrared spectroscopy are used to track the evolution of the catalytic sites and intermediates to understand the photocatalytic mechanism. Similar ultrathin catalysts are also investigated to explore the generality of the proposed electron transfer approach. Our findings illustrate that abundant transition metal complexes hold great promise for IR light-responsive photocatalysis.
This study demonstrates the effectiveness and generality of utilizing ultrathin Cu-based hydrotalcite-like hydroxy salts as catalysts for infrared light-driven CO
2
reduction based on their d-d orbital transition mechanism.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-39666-0</identifier><identifier>PMID: 37419885</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/890 ; 639/638/263 ; 639/638/298 ; 639/638/439/890 ; Absorption spectroscopy ; Active sites ; Carbon dioxide ; Catalysts ; Coordination compounds ; Copper ; Electron transfer ; Fourier transforms ; Humanities and Social Sciences ; Infrared spectroscopy ; Infrared tracking ; Intermediates ; Irradiation ; Light ; Light irradiation ; Metal complexes ; multidisciplinary ; Optical properties ; Photocatalysis ; Science ; Science (multidisciplinary) ; Spectrum analysis ; Transition metal compounds ; X ray absorption ; X-ray absorption spectroscopy</subject><ispartof>Nature communications, 2023-07, Vol.14 (1), p.4034-4034, Article 4034</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-cc371dbb882e64c5f3258b50cd668763f96b0b0cf6fa8494b6691ea3a0afefbf3</citedby><cites>FETCH-LOGICAL-c518t-cc371dbb882e64c5f3258b50cd668763f96b0b0cf6fa8494b6691ea3a0afefbf3</cites><orcidid>0000-0002-4859-4325 ; 0000-0001-8963-949X ; 0000-0003-1927-3642 ; 0000-0002-9628-329X ; 0000-0003-3885-2703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2834368312/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2834368312?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Chen, Guangbo</creatorcontrib><creatorcontrib>Chu, Xingyuan</creatorcontrib><creatorcontrib>Liu, Xiaohui</creatorcontrib><creatorcontrib>Naisa, Chandrasekhar</creatorcontrib><creatorcontrib>Pohl, Darius</creatorcontrib><creatorcontrib>Löffler, Markus</creatorcontrib><creatorcontrib>Feng, Xinliang</creatorcontrib><title>Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>A general approach to promote IR light-driven CO
2
reduction within ultrathin Cu-based hydrotalcite-like hydroxy salts is presented. Associated band structures and optical properties of the Cu-based materials are first predicted by theory. Subsequently, Cu
4
(SO
4
)(OH)
6
nanosheets were synthesized and are found to undergo cascaded electron transfer processes based on
d
-
d
orbital transitions under infrared light irradiation. The obtained samples exhibit excellent activity for IR light-driven CO
2
reduction, with a production rate of 21.95 and 4.11 μmol g
−1
h
−1
for CO and CH
4
, respectively, surpassing most reported catalysts under the same reaction conditions. X-ray absorption spectroscopy and in situ Fourier-transform infrared spectroscopy are used to track the evolution of the catalytic sites and intermediates to understand the photocatalytic mechanism. Similar ultrathin catalysts are also investigated to explore the generality of the proposed electron transfer approach. Our findings illustrate that abundant transition metal complexes hold great promise for IR light-responsive photocatalysis.
This study demonstrates the effectiveness and generality of utilizing ultrathin Cu-based hydrotalcite-like hydroxy salts as catalysts for infrared light-driven CO
2
reduction based on their d-d orbital transition mechanism.</description><subject>639/301/299/890</subject><subject>639/638/263</subject><subject>639/638/298</subject><subject>639/638/439/890</subject><subject>Absorption spectroscopy</subject><subject>Active sites</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Coordination compounds</subject><subject>Copper</subject><subject>Electron transfer</subject><subject>Fourier transforms</subject><subject>Humanities and Social Sciences</subject><subject>Infrared spectroscopy</subject><subject>Infrared tracking</subject><subject>Intermediates</subject><subject>Irradiation</subject><subject>Light</subject><subject>Light irradiation</subject><subject>Metal complexes</subject><subject>multidisciplinary</subject><subject>Optical properties</subject><subject>Photocatalysis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrum analysis</subject><subject>Transition metal compounds</subject><subject>X ray absorption</subject><subject>X-ray absorption spectroscopy</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstuFDEQRVsIRKKQH2BliQ2bBr_aXV6haMQjUqRsYG352eNRjz3YPZHm7_GkIyAs8MZW1b2nSuXqurcEfyCYwcfKCRdjjynrmRRC9PhFd0kxJz0ZKXv51_uiu651h9thkgDnr7sLNnIiAYbLzt1Y62uNaUIHXeJy6kMuJjrnE3K9Q0vRqcYl5lRRy6DDNi_Z6kXPpyVatLmnqHh3tGcFciU-NJ85oZhC0S2B5jhtlzfdq6Dn6q-f7qvux5fP3zff-rv7r7ebm7veDgSW3lo2EmcMAPWC2yEwOoAZsHVCwChYkMJgg20QQQOX3AghiddMYx18MIFddbcr12W9U4cS97qcVNZRPQZymZQure3ZK5CeDSMTWnDBA8GaDRQcdlpzYBCGxvq0sg5Hs_fO-tRGMT-DPs-kuFVTflDtdyhIKRrh_ROh5J9HXxe1j9X6edbJ52NVFFrNESQ9F3v3j3SXjyW1WZ1VnAlghDYVXVW25FqLD7-7IfhcFtS6FKothXpcCoWbia2m2sRp8uUP-j-uXzXzuV4</recordid><startdate>20230707</startdate><enddate>20230707</enddate><creator>Li, Xiaodong</creator><creator>Li, Li</creator><creator>Chen, Guangbo</creator><creator>Chu, Xingyuan</creator><creator>Liu, Xiaohui</creator><creator>Naisa, Chandrasekhar</creator><creator>Pohl, Darius</creator><creator>Löffler, Markus</creator><creator>Feng, Xinliang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4859-4325</orcidid><orcidid>https://orcid.org/0000-0001-8963-949X</orcidid><orcidid>https://orcid.org/0000-0003-1927-3642</orcidid><orcidid>https://orcid.org/0000-0002-9628-329X</orcidid><orcidid>https://orcid.org/0000-0003-3885-2703</orcidid></search><sort><creationdate>20230707</creationdate><title>Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light</title><author>Li, Xiaodong ; Li, Li ; Chen, Guangbo ; Chu, Xingyuan ; Liu, Xiaohui ; Naisa, Chandrasekhar ; Pohl, Darius ; Löffler, Markus ; Feng, Xinliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-cc371dbb882e64c5f3258b50cd668763f96b0b0cf6fa8494b6691ea3a0afefbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/299/890</topic><topic>639/638/263</topic><topic>639/638/298</topic><topic>639/638/439/890</topic><topic>Absorption spectroscopy</topic><topic>Active sites</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Coordination compounds</topic><topic>Copper</topic><topic>Electron transfer</topic><topic>Fourier transforms</topic><topic>Humanities and Social Sciences</topic><topic>Infrared spectroscopy</topic><topic>Infrared tracking</topic><topic>Intermediates</topic><topic>Irradiation</topic><topic>Light</topic><topic>Light irradiation</topic><topic>Metal complexes</topic><topic>multidisciplinary</topic><topic>Optical properties</topic><topic>Photocatalysis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrum analysis</topic><topic>Transition metal compounds</topic><topic>X ray absorption</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Chen, Guangbo</creatorcontrib><creatorcontrib>Chu, Xingyuan</creatorcontrib><creatorcontrib>Liu, Xiaohui</creatorcontrib><creatorcontrib>Naisa, Chandrasekhar</creatorcontrib><creatorcontrib>Pohl, Darius</creatorcontrib><creatorcontrib>Löffler, Markus</creatorcontrib><creatorcontrib>Feng, Xinliang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaodong</au><au>Li, Li</au><au>Chen, Guangbo</au><au>Chu, Xingyuan</au><au>Liu, Xiaohui</au><au>Naisa, Chandrasekhar</au><au>Pohl, Darius</au><au>Löffler, Markus</au><au>Feng, Xinliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-07-07</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>4034</spage><epage>4034</epage><pages>4034-4034</pages><artnum>4034</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>A general approach to promote IR light-driven CO
2
reduction within ultrathin Cu-based hydrotalcite-like hydroxy salts is presented. Associated band structures and optical properties of the Cu-based materials are first predicted by theory. Subsequently, Cu
4
(SO
4
)(OH)
6
nanosheets were synthesized and are found to undergo cascaded electron transfer processes based on
d
-
d
orbital transitions under infrared light irradiation. The obtained samples exhibit excellent activity for IR light-driven CO
2
reduction, with a production rate of 21.95 and 4.11 μmol g
−1
h
−1
for CO and CH
4
, respectively, surpassing most reported catalysts under the same reaction conditions. X-ray absorption spectroscopy and in situ Fourier-transform infrared spectroscopy are used to track the evolution of the catalytic sites and intermediates to understand the photocatalytic mechanism. Similar ultrathin catalysts are also investigated to explore the generality of the proposed electron transfer approach. Our findings illustrate that abundant transition metal complexes hold great promise for IR light-responsive photocatalysis.
This study demonstrates the effectiveness and generality of utilizing ultrathin Cu-based hydrotalcite-like hydroxy salts as catalysts for infrared light-driven CO
2
reduction based on their d-d orbital transition mechanism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37419885</pmid><doi>10.1038/s41467-023-39666-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4859-4325</orcidid><orcidid>https://orcid.org/0000-0001-8963-949X</orcidid><orcidid>https://orcid.org/0000-0003-1927-3642</orcidid><orcidid>https://orcid.org/0000-0002-9628-329X</orcidid><orcidid>https://orcid.org/0000-0003-3885-2703</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-07, Vol.14 (1), p.4034-4034, Article 4034 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_89e35736a6464f10a3528d0daa4838f5 |
source | Publicly Available Content Database; Nature; PubMed; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/299/890 639/638/263 639/638/298 639/638/439/890 Absorption spectroscopy Active sites Carbon dioxide Catalysts Coordination compounds Copper Electron transfer Fourier transforms Humanities and Social Sciences Infrared spectroscopy Infrared tracking Intermediates Irradiation Light Light irradiation Metal complexes multidisciplinary Optical properties Photocatalysis Science Science (multidisciplinary) Spectrum analysis Transition metal compounds X ray absorption X-ray absorption spectroscopy |
title | Accessing parity-forbidden d-d transitions for photocatalytic CO2 reduction driven by infrared light |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accessing%20parity-forbidden%20d-d%20transitions%20for%20photocatalytic%20CO2%20reduction%20driven%20by%20infrared%20light&rft.jtitle=Nature%20communications&rft.au=Li,%20Xiaodong&rft.date=2023-07-07&rft.volume=14&rft.issue=1&rft.spage=4034&rft.epage=4034&rft.pages=4034-4034&rft.artnum=4034&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-39666-0&rft_dat=%3Cproquest_doaj_%3E2835278925%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-cc371dbb882e64c5f3258b50cd668763f96b0b0cf6fa8494b6691ea3a0afefbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2834368312&rft_id=info:pmid/37419885&rfr_iscdi=true |