Loading…

TmPGRP-SA regulates Antimicrobial Response to Bacteria and Fungi in the Fat Body and Gut of Tenebrio molitor

Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to inf...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2020-03, Vol.21 (6), p.2113
Main Authors: Keshavarz, Maryam, Jo, Yong Hun, Edosa, Tariku Tesfaye, Bae, Young Min, Han, Yeon Soo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-5ca5ef362cf46349488954647fa6c8ee463181622d3d283a44b29b04338155a23
cites cdi_FETCH-LOGICAL-c455t-5ca5ef362cf46349488954647fa6c8ee463181622d3d283a44b29b04338155a23
container_end_page
container_issue 6
container_start_page 2113
container_title International journal of molecular sciences
container_volume 21
creator Keshavarz, Maryam
Jo, Yong Hun
Edosa, Tariku Tesfaye
Bae, Young Min
Han, Yeon Soo
description Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to infections, studies on its role in Tenebrio molitor are lacking. Here, we present a functional analysis of T. molitor PGRP-SA (TmPGRP-SA). In the absence of microbes, TmPGRP-SA was highly expressed in the late-larval fat body, followed by hemocytes, and gut. Interestingly, following Escherichia coli, Staphylococcus aureus, and Candida albicans infections, the mRNA level of TmPGRP-SA was significantly upregulated in both the fat body and gut. TmPGRP-SA silencing had a significant effect on the mortality rates for all the microbes tested. Moreover, TmPGRP-SA is required for regulating the expression of eight AMP genes namely TmTenecin-1, -2, and -4; TmDefensin-1 and -2; TmColeoptericin-1; and TmAttacin-1b and -2 in the fat body in response to E. coli and S. aureus infections. TmPGRP-SA is essential for the transcription of TmTenecin-2, -4; TmDefensin-2; TmColeoptericin-1, -2; and TmAttacin-1a, -1b, and -2 in the gut upon E. coli and C. albicans infections. However, TmPGRP-SA does not regulate AMP expression in the hemocytes. Additionally, TmDorsal isoform X2, a downstream Toll transcription factor, was downregulated in TmPGRP-SA-silenced larval fat body following E. coli and S. aureus challenges, and in the gut following E. coli and C. albicans challenges.
doi_str_mv 10.3390/ijms21062113
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_89e64d4d8bfe44489f48d3c87618f5c0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_89e64d4d8bfe44489f48d3c87618f5c0</doaj_id><sourcerecordid>2382686765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-5ca5ef362cf46349488954647fa6c8ee463181622d3d283a44b29b04338155a23</originalsourceid><addsrcrecordid>eNpdkt9rFDEQgBdRbK2--QcEfPHB0_yYZLMvwrV4Z6FgqedzyGZnrzl2kzPJCv3v3bsr0vo0w8zHxzAzVfWe0c9CNPSL342ZM6o4Y-JFdc6A8wWlqn75JD-r3uS8o5QLLpvX1ZngnAIIfV4Nm_F2fXe7-LkkCbfTYAtmsgzFj96l2Ho7kDvM-xgykhLJpXUFk7fEho6sprD1xAdS7pGsbCGXsXs4dtZTIbEnGwzYJh_JGAdfYnpbvertkPHdY7yofq2-ba6-L25-rK-vljcLB1KWhXRWYi8Udz0oAQ1o3UhQUPdWOY04F5lmivNOdFwLC9DypqUghGZSWi4uquuTt4t2Z_bJjzY9mGi9ORZi2hqbincDGt2ggg463fYIALrpQXfC6Vox3UtHZ9fXk2s_tSN2DkNJdngmfd4J_t5s4x9TM9HUjZwFHx8FKf6eMBcz-uxwGGzAOGXDheZKq1od0A__obs4pTCv6khxELU-UJ9O1HygnBP2_4Zh1Bxewjx9CfEXAQOmLQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382243785</pqid></control><display><type>article</type><title>TmPGRP-SA regulates Antimicrobial Response to Bacteria and Fungi in the Fat Body and Gut of Tenebrio molitor</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Keshavarz, Maryam ; Jo, Yong Hun ; Edosa, Tariku Tesfaye ; Bae, Young Min ; Han, Yeon Soo</creator><creatorcontrib>Keshavarz, Maryam ; Jo, Yong Hun ; Edosa, Tariku Tesfaye ; Bae, Young Min ; Han, Yeon Soo</creatorcontrib><description>Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to infections, studies on its role in Tenebrio molitor are lacking. Here, we present a functional analysis of T. molitor PGRP-SA (TmPGRP-SA). In the absence of microbes, TmPGRP-SA was highly expressed in the late-larval fat body, followed by hemocytes, and gut. Interestingly, following Escherichia coli, Staphylococcus aureus, and Candida albicans infections, the mRNA level of TmPGRP-SA was significantly upregulated in both the fat body and gut. TmPGRP-SA silencing had a significant effect on the mortality rates for all the microbes tested. Moreover, TmPGRP-SA is required for regulating the expression of eight AMP genes namely TmTenecin-1, -2, and -4; TmDefensin-1 and -2; TmColeoptericin-1; and TmAttacin-1b and -2 in the fat body in response to E. coli and S. aureus infections. TmPGRP-SA is essential for the transcription of TmTenecin-2, -4; TmDefensin-2; TmColeoptericin-1, -2; and TmAttacin-1a, -1b, and -2 in the gut upon E. coli and C. albicans infections. However, TmPGRP-SA does not regulate AMP expression in the hemocytes. Additionally, TmDorsal isoform X2, a downstream Toll transcription factor, was downregulated in TmPGRP-SA-silenced larval fat body following E. coli and S. aureus challenges, and in the gut following E. coli and C. albicans challenges.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21062113</identifier><identifier>PMID: 32204438</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amino acids ; Antiinfectives and antibacterials ; Antimicrobial agents ; antimicrobial peptide ; Antimicrobial peptides ; Bacteria ; Binding sites ; Candida albicans ; Escherichia coli ; expression pattern ; Fat body ; Fruit flies ; Functional analysis ; Fungi ; Gene expression ; Gram-positive bacteria ; Hemocytes ; Immune response ; Insects ; nuclear factor κb ; Pathogens ; Peptides ; Peptidoglycans ; Phylogenetics ; Proteins ; Staphylococcus aureus ; Tenebrio molitor ; tmpgrp-sa</subject><ispartof>International journal of molecular sciences, 2020-03, Vol.21 (6), p.2113</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-5ca5ef362cf46349488954647fa6c8ee463181622d3d283a44b29b04338155a23</citedby><cites>FETCH-LOGICAL-c455t-5ca5ef362cf46349488954647fa6c8ee463181622d3d283a44b29b04338155a23</cites><orcidid>0000-0002-0119-0737 ; 0000-0002-3621-046X ; 0000-0002-5482-1846 ; 0000-0002-9277-5772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2382243785/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2382243785?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Keshavarz, Maryam</creatorcontrib><creatorcontrib>Jo, Yong Hun</creatorcontrib><creatorcontrib>Edosa, Tariku Tesfaye</creatorcontrib><creatorcontrib>Bae, Young Min</creatorcontrib><creatorcontrib>Han, Yeon Soo</creatorcontrib><title>TmPGRP-SA regulates Antimicrobial Response to Bacteria and Fungi in the Fat Body and Gut of Tenebrio molitor</title><title>International journal of molecular sciences</title><description>Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to infections, studies on its role in Tenebrio molitor are lacking. Here, we present a functional analysis of T. molitor PGRP-SA (TmPGRP-SA). In the absence of microbes, TmPGRP-SA was highly expressed in the late-larval fat body, followed by hemocytes, and gut. Interestingly, following Escherichia coli, Staphylococcus aureus, and Candida albicans infections, the mRNA level of TmPGRP-SA was significantly upregulated in both the fat body and gut. TmPGRP-SA silencing had a significant effect on the mortality rates for all the microbes tested. Moreover, TmPGRP-SA is required for regulating the expression of eight AMP genes namely TmTenecin-1, -2, and -4; TmDefensin-1 and -2; TmColeoptericin-1; and TmAttacin-1b and -2 in the fat body in response to E. coli and S. aureus infections. TmPGRP-SA is essential for the transcription of TmTenecin-2, -4; TmDefensin-2; TmColeoptericin-1, -2; and TmAttacin-1a, -1b, and -2 in the gut upon E. coli and C. albicans infections. However, TmPGRP-SA does not regulate AMP expression in the hemocytes. Additionally, TmDorsal isoform X2, a downstream Toll transcription factor, was downregulated in TmPGRP-SA-silenced larval fat body following E. coli and S. aureus challenges, and in the gut following E. coli and C. albicans challenges.</description><subject>Amino acids</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>antimicrobial peptide</subject><subject>Antimicrobial peptides</subject><subject>Bacteria</subject><subject>Binding sites</subject><subject>Candida albicans</subject><subject>Escherichia coli</subject><subject>expression pattern</subject><subject>Fat body</subject><subject>Fruit flies</subject><subject>Functional analysis</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Gram-positive bacteria</subject><subject>Hemocytes</subject><subject>Immune response</subject><subject>Insects</subject><subject>nuclear factor κb</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Peptidoglycans</subject><subject>Phylogenetics</subject><subject>Proteins</subject><subject>Staphylococcus aureus</subject><subject>Tenebrio molitor</subject><subject>tmpgrp-sa</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9rFDEQgBdRbK2--QcEfPHB0_yYZLMvwrV4Z6FgqedzyGZnrzl2kzPJCv3v3bsr0vo0w8zHxzAzVfWe0c9CNPSL342ZM6o4Y-JFdc6A8wWlqn75JD-r3uS8o5QLLpvX1ZngnAIIfV4Nm_F2fXe7-LkkCbfTYAtmsgzFj96l2Ho7kDvM-xgykhLJpXUFk7fEho6sprD1xAdS7pGsbCGXsXs4dtZTIbEnGwzYJh_JGAdfYnpbvertkPHdY7yofq2-ba6-L25-rK-vljcLB1KWhXRWYi8Udz0oAQ1o3UhQUPdWOY04F5lmivNOdFwLC9DypqUghGZSWi4uquuTt4t2Z_bJjzY9mGi9ORZi2hqbincDGt2ggg463fYIALrpQXfC6Vox3UtHZ9fXk2s_tSN2DkNJdngmfd4J_t5s4x9TM9HUjZwFHx8FKf6eMBcz-uxwGGzAOGXDheZKq1od0A__obs4pTCv6khxELU-UJ9O1HygnBP2_4Zh1Bxewjx9CfEXAQOmLQ</recordid><startdate>20200319</startdate><enddate>20200319</enddate><creator>Keshavarz, Maryam</creator><creator>Jo, Yong Hun</creator><creator>Edosa, Tariku Tesfaye</creator><creator>Bae, Young Min</creator><creator>Han, Yeon Soo</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0119-0737</orcidid><orcidid>https://orcid.org/0000-0002-3621-046X</orcidid><orcidid>https://orcid.org/0000-0002-5482-1846</orcidid><orcidid>https://orcid.org/0000-0002-9277-5772</orcidid></search><sort><creationdate>20200319</creationdate><title>TmPGRP-SA regulates Antimicrobial Response to Bacteria and Fungi in the Fat Body and Gut of Tenebrio molitor</title><author>Keshavarz, Maryam ; Jo, Yong Hun ; Edosa, Tariku Tesfaye ; Bae, Young Min ; Han, Yeon Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-5ca5ef362cf46349488954647fa6c8ee463181622d3d283a44b29b04338155a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>antimicrobial peptide</topic><topic>Antimicrobial peptides</topic><topic>Bacteria</topic><topic>Binding sites</topic><topic>Candida albicans</topic><topic>Escherichia coli</topic><topic>expression pattern</topic><topic>Fat body</topic><topic>Fruit flies</topic><topic>Functional analysis</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Gram-positive bacteria</topic><topic>Hemocytes</topic><topic>Immune response</topic><topic>Insects</topic><topic>nuclear factor κb</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Peptidoglycans</topic><topic>Phylogenetics</topic><topic>Proteins</topic><topic>Staphylococcus aureus</topic><topic>Tenebrio molitor</topic><topic>tmpgrp-sa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keshavarz, Maryam</creatorcontrib><creatorcontrib>Jo, Yong Hun</creatorcontrib><creatorcontrib>Edosa, Tariku Tesfaye</creatorcontrib><creatorcontrib>Bae, Young Min</creatorcontrib><creatorcontrib>Han, Yeon Soo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keshavarz, Maryam</au><au>Jo, Yong Hun</au><au>Edosa, Tariku Tesfaye</au><au>Bae, Young Min</au><au>Han, Yeon Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TmPGRP-SA regulates Antimicrobial Response to Bacteria and Fungi in the Fat Body and Gut of Tenebrio molitor</atitle><jtitle>International journal of molecular sciences</jtitle><date>2020-03-19</date><risdate>2020</risdate><volume>21</volume><issue>6</issue><spage>2113</spage><pages>2113-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to infections, studies on its role in Tenebrio molitor are lacking. Here, we present a functional analysis of T. molitor PGRP-SA (TmPGRP-SA). In the absence of microbes, TmPGRP-SA was highly expressed in the late-larval fat body, followed by hemocytes, and gut. Interestingly, following Escherichia coli, Staphylococcus aureus, and Candida albicans infections, the mRNA level of TmPGRP-SA was significantly upregulated in both the fat body and gut. TmPGRP-SA silencing had a significant effect on the mortality rates for all the microbes tested. Moreover, TmPGRP-SA is required for regulating the expression of eight AMP genes namely TmTenecin-1, -2, and -4; TmDefensin-1 and -2; TmColeoptericin-1; and TmAttacin-1b and -2 in the fat body in response to E. coli and S. aureus infections. TmPGRP-SA is essential for the transcription of TmTenecin-2, -4; TmDefensin-2; TmColeoptericin-1, -2; and TmAttacin-1a, -1b, and -2 in the gut upon E. coli and C. albicans infections. However, TmPGRP-SA does not regulate AMP expression in the hemocytes. Additionally, TmDorsal isoform X2, a downstream Toll transcription factor, was downregulated in TmPGRP-SA-silenced larval fat body following E. coli and S. aureus challenges, and in the gut following E. coli and C. albicans challenges.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32204438</pmid><doi>10.3390/ijms21062113</doi><orcidid>https://orcid.org/0000-0002-0119-0737</orcidid><orcidid>https://orcid.org/0000-0002-3621-046X</orcidid><orcidid>https://orcid.org/0000-0002-5482-1846</orcidid><orcidid>https://orcid.org/0000-0002-9277-5772</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-03, Vol.21 (6), p.2113
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_89e64d4d8bfe44489f48d3c87618f5c0
source Open Access: PubMed Central; Publicly Available Content Database
subjects Amino acids
Antiinfectives and antibacterials
Antimicrobial agents
antimicrobial peptide
Antimicrobial peptides
Bacteria
Binding sites
Candida albicans
Escherichia coli
expression pattern
Fat body
Fruit flies
Functional analysis
Fungi
Gene expression
Gram-positive bacteria
Hemocytes
Immune response
Insects
nuclear factor κb
Pathogens
Peptides
Peptidoglycans
Phylogenetics
Proteins
Staphylococcus aureus
Tenebrio molitor
tmpgrp-sa
title TmPGRP-SA regulates Antimicrobial Response to Bacteria and Fungi in the Fat Body and Gut of Tenebrio molitor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TmPGRP-SA%20regulates%20Antimicrobial%20Response%20to%20Bacteria%20and%20Fungi%20in%20the%20Fat%20Body%20and%20Gut%20of%20Tenebrio%20molitor&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Keshavarz,%20Maryam&rft.date=2020-03-19&rft.volume=21&rft.issue=6&rft.spage=2113&rft.pages=2113-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21062113&rft_dat=%3Cproquest_doaj_%3E2382686765%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-5ca5ef362cf46349488954647fa6c8ee463181622d3d283a44b29b04338155a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2382243785&rft_id=info:pmid/32204438&rfr_iscdi=true