Loading…
TmPGRP-SA regulates Antimicrobial Response to Bacteria and Fungi in the Fat Body and Gut of Tenebrio molitor
Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to inf...
Saved in:
Published in: | International journal of molecular sciences 2020-03, Vol.21 (6), p.2113 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-5ca5ef362cf46349488954647fa6c8ee463181622d3d283a44b29b04338155a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-5ca5ef362cf46349488954647fa6c8ee463181622d3d283a44b29b04338155a23 |
container_end_page | |
container_issue | 6 |
container_start_page | 2113 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Keshavarz, Maryam Jo, Yong Hun Edosa, Tariku Tesfaye Bae, Young Min Han, Yeon Soo |
description | Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to infections, studies on its role in Tenebrio molitor are lacking. Here, we present a functional analysis of T. molitor PGRP-SA (TmPGRP-SA). In the absence of microbes, TmPGRP-SA was highly expressed in the late-larval fat body, followed by hemocytes, and gut. Interestingly, following Escherichia coli, Staphylococcus aureus, and Candida albicans infections, the mRNA level of TmPGRP-SA was significantly upregulated in both the fat body and gut. TmPGRP-SA silencing had a significant effect on the mortality rates for all the microbes tested. Moreover, TmPGRP-SA is required for regulating the expression of eight AMP genes namely TmTenecin-1, -2, and -4; TmDefensin-1 and -2; TmColeoptericin-1; and TmAttacin-1b and -2 in the fat body in response to E. coli and S. aureus infections. TmPGRP-SA is essential for the transcription of TmTenecin-2, -4; TmDefensin-2; TmColeoptericin-1, -2; and TmAttacin-1a, -1b, and -2 in the gut upon E. coli and C. albicans infections. However, TmPGRP-SA does not regulate AMP expression in the hemocytes. Additionally, TmDorsal isoform X2, a downstream Toll transcription factor, was downregulated in TmPGRP-SA-silenced larval fat body following E. coli and S. aureus challenges, and in the gut following E. coli and C. albicans challenges. |
doi_str_mv | 10.3390/ijms21062113 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_89e64d4d8bfe44489f48d3c87618f5c0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_89e64d4d8bfe44489f48d3c87618f5c0</doaj_id><sourcerecordid>2382686765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-5ca5ef362cf46349488954647fa6c8ee463181622d3d283a44b29b04338155a23</originalsourceid><addsrcrecordid>eNpdkt9rFDEQgBdRbK2--QcEfPHB0_yYZLMvwrV4Z6FgqedzyGZnrzl2kzPJCv3v3bsr0vo0w8zHxzAzVfWe0c9CNPSL342ZM6o4Y-JFdc6A8wWlqn75JD-r3uS8o5QLLpvX1ZngnAIIfV4Nm_F2fXe7-LkkCbfTYAtmsgzFj96l2Ho7kDvM-xgykhLJpXUFk7fEho6sprD1xAdS7pGsbCGXsXs4dtZTIbEnGwzYJh_JGAdfYnpbvertkPHdY7yofq2-ba6-L25-rK-vljcLB1KWhXRWYi8Udz0oAQ1o3UhQUPdWOY04F5lmivNOdFwLC9DypqUghGZSWi4uquuTt4t2Z_bJjzY9mGi9ORZi2hqbincDGt2ggg463fYIALrpQXfC6Vox3UtHZ9fXk2s_tSN2DkNJdngmfd4J_t5s4x9TM9HUjZwFHx8FKf6eMBcz-uxwGGzAOGXDheZKq1od0A__obs4pTCv6khxELU-UJ9O1HygnBP2_4Zh1Bxewjx9CfEXAQOmLQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2382243785</pqid></control><display><type>article</type><title>TmPGRP-SA regulates Antimicrobial Response to Bacteria and Fungi in the Fat Body and Gut of Tenebrio molitor</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Keshavarz, Maryam ; Jo, Yong Hun ; Edosa, Tariku Tesfaye ; Bae, Young Min ; Han, Yeon Soo</creator><creatorcontrib>Keshavarz, Maryam ; Jo, Yong Hun ; Edosa, Tariku Tesfaye ; Bae, Young Min ; Han, Yeon Soo</creatorcontrib><description>Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to infections, studies on its role in Tenebrio molitor are lacking. Here, we present a functional analysis of T. molitor PGRP-SA (TmPGRP-SA). In the absence of microbes, TmPGRP-SA was highly expressed in the late-larval fat body, followed by hemocytes, and gut. Interestingly, following Escherichia coli, Staphylococcus aureus, and Candida albicans infections, the mRNA level of TmPGRP-SA was significantly upregulated in both the fat body and gut. TmPGRP-SA silencing had a significant effect on the mortality rates for all the microbes tested. Moreover, TmPGRP-SA is required for regulating the expression of eight AMP genes namely TmTenecin-1, -2, and -4; TmDefensin-1 and -2; TmColeoptericin-1; and TmAttacin-1b and -2 in the fat body in response to E. coli and S. aureus infections. TmPGRP-SA is essential for the transcription of TmTenecin-2, -4; TmDefensin-2; TmColeoptericin-1, -2; and TmAttacin-1a, -1b, and -2 in the gut upon E. coli and C. albicans infections. However, TmPGRP-SA does not regulate AMP expression in the hemocytes. Additionally, TmDorsal isoform X2, a downstream Toll transcription factor, was downregulated in TmPGRP-SA-silenced larval fat body following E. coli and S. aureus challenges, and in the gut following E. coli and C. albicans challenges.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21062113</identifier><identifier>PMID: 32204438</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amino acids ; Antiinfectives and antibacterials ; Antimicrobial agents ; antimicrobial peptide ; Antimicrobial peptides ; Bacteria ; Binding sites ; Candida albicans ; Escherichia coli ; expression pattern ; Fat body ; Fruit flies ; Functional analysis ; Fungi ; Gene expression ; Gram-positive bacteria ; Hemocytes ; Immune response ; Insects ; nuclear factor κb ; Pathogens ; Peptides ; Peptidoglycans ; Phylogenetics ; Proteins ; Staphylococcus aureus ; Tenebrio molitor ; tmpgrp-sa</subject><ispartof>International journal of molecular sciences, 2020-03, Vol.21 (6), p.2113</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-5ca5ef362cf46349488954647fa6c8ee463181622d3d283a44b29b04338155a23</citedby><cites>FETCH-LOGICAL-c455t-5ca5ef362cf46349488954647fa6c8ee463181622d3d283a44b29b04338155a23</cites><orcidid>0000-0002-0119-0737 ; 0000-0002-3621-046X ; 0000-0002-5482-1846 ; 0000-0002-9277-5772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2382243785/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2382243785?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Keshavarz, Maryam</creatorcontrib><creatorcontrib>Jo, Yong Hun</creatorcontrib><creatorcontrib>Edosa, Tariku Tesfaye</creatorcontrib><creatorcontrib>Bae, Young Min</creatorcontrib><creatorcontrib>Han, Yeon Soo</creatorcontrib><title>TmPGRP-SA regulates Antimicrobial Response to Bacteria and Fungi in the Fat Body and Gut of Tenebrio molitor</title><title>International journal of molecular sciences</title><description>Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to infections, studies on its role in Tenebrio molitor are lacking. Here, we present a functional analysis of T. molitor PGRP-SA (TmPGRP-SA). In the absence of microbes, TmPGRP-SA was highly expressed in the late-larval fat body, followed by hemocytes, and gut. Interestingly, following Escherichia coli, Staphylococcus aureus, and Candida albicans infections, the mRNA level of TmPGRP-SA was significantly upregulated in both the fat body and gut. TmPGRP-SA silencing had a significant effect on the mortality rates for all the microbes tested. Moreover, TmPGRP-SA is required for regulating the expression of eight AMP genes namely TmTenecin-1, -2, and -4; TmDefensin-1 and -2; TmColeoptericin-1; and TmAttacin-1b and -2 in the fat body in response to E. coli and S. aureus infections. TmPGRP-SA is essential for the transcription of TmTenecin-2, -4; TmDefensin-2; TmColeoptericin-1, -2; and TmAttacin-1a, -1b, and -2 in the gut upon E. coli and C. albicans infections. However, TmPGRP-SA does not regulate AMP expression in the hemocytes. Additionally, TmDorsal isoform X2, a downstream Toll transcription factor, was downregulated in TmPGRP-SA-silenced larval fat body following E. coli and S. aureus challenges, and in the gut following E. coli and C. albicans challenges.</description><subject>Amino acids</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>antimicrobial peptide</subject><subject>Antimicrobial peptides</subject><subject>Bacteria</subject><subject>Binding sites</subject><subject>Candida albicans</subject><subject>Escherichia coli</subject><subject>expression pattern</subject><subject>Fat body</subject><subject>Fruit flies</subject><subject>Functional analysis</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Gram-positive bacteria</subject><subject>Hemocytes</subject><subject>Immune response</subject><subject>Insects</subject><subject>nuclear factor κb</subject><subject>Pathogens</subject><subject>Peptides</subject><subject>Peptidoglycans</subject><subject>Phylogenetics</subject><subject>Proteins</subject><subject>Staphylococcus aureus</subject><subject>Tenebrio molitor</subject><subject>tmpgrp-sa</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9rFDEQgBdRbK2--QcEfPHB0_yYZLMvwrV4Z6FgqedzyGZnrzl2kzPJCv3v3bsr0vo0w8zHxzAzVfWe0c9CNPSL342ZM6o4Y-JFdc6A8wWlqn75JD-r3uS8o5QLLpvX1ZngnAIIfV4Nm_F2fXe7-LkkCbfTYAtmsgzFj96l2Ho7kDvM-xgykhLJpXUFk7fEho6sprD1xAdS7pGsbCGXsXs4dtZTIbEnGwzYJh_JGAdfYnpbvertkPHdY7yofq2-ba6-L25-rK-vljcLB1KWhXRWYi8Udz0oAQ1o3UhQUPdWOY04F5lmivNOdFwLC9DypqUghGZSWi4uquuTt4t2Z_bJjzY9mGi9ORZi2hqbincDGt2ggg463fYIALrpQXfC6Vox3UtHZ9fXk2s_tSN2DkNJdngmfd4J_t5s4x9TM9HUjZwFHx8FKf6eMBcz-uxwGGzAOGXDheZKq1od0A__obs4pTCv6khxELU-UJ9O1HygnBP2_4Zh1Bxewjx9CfEXAQOmLQ</recordid><startdate>20200319</startdate><enddate>20200319</enddate><creator>Keshavarz, Maryam</creator><creator>Jo, Yong Hun</creator><creator>Edosa, Tariku Tesfaye</creator><creator>Bae, Young Min</creator><creator>Han, Yeon Soo</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0119-0737</orcidid><orcidid>https://orcid.org/0000-0002-3621-046X</orcidid><orcidid>https://orcid.org/0000-0002-5482-1846</orcidid><orcidid>https://orcid.org/0000-0002-9277-5772</orcidid></search><sort><creationdate>20200319</creationdate><title>TmPGRP-SA regulates Antimicrobial Response to Bacteria and Fungi in the Fat Body and Gut of Tenebrio molitor</title><author>Keshavarz, Maryam ; Jo, Yong Hun ; Edosa, Tariku Tesfaye ; Bae, Young Min ; Han, Yeon Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-5ca5ef362cf46349488954647fa6c8ee463181622d3d283a44b29b04338155a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>antimicrobial peptide</topic><topic>Antimicrobial peptides</topic><topic>Bacteria</topic><topic>Binding sites</topic><topic>Candida albicans</topic><topic>Escherichia coli</topic><topic>expression pattern</topic><topic>Fat body</topic><topic>Fruit flies</topic><topic>Functional analysis</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Gram-positive bacteria</topic><topic>Hemocytes</topic><topic>Immune response</topic><topic>Insects</topic><topic>nuclear factor κb</topic><topic>Pathogens</topic><topic>Peptides</topic><topic>Peptidoglycans</topic><topic>Phylogenetics</topic><topic>Proteins</topic><topic>Staphylococcus aureus</topic><topic>Tenebrio molitor</topic><topic>tmpgrp-sa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keshavarz, Maryam</creatorcontrib><creatorcontrib>Jo, Yong Hun</creatorcontrib><creatorcontrib>Edosa, Tariku Tesfaye</creatorcontrib><creatorcontrib>Bae, Young Min</creatorcontrib><creatorcontrib>Han, Yeon Soo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keshavarz, Maryam</au><au>Jo, Yong Hun</au><au>Edosa, Tariku Tesfaye</au><au>Bae, Young Min</au><au>Han, Yeon Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TmPGRP-SA regulates Antimicrobial Response to Bacteria and Fungi in the Fat Body and Gut of Tenebrio molitor</atitle><jtitle>International journal of molecular sciences</jtitle><date>2020-03-19</date><risdate>2020</risdate><volume>21</volume><issue>6</issue><spage>2113</spage><pages>2113-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to infections, studies on its role in Tenebrio molitor are lacking. Here, we present a functional analysis of T. molitor PGRP-SA (TmPGRP-SA). In the absence of microbes, TmPGRP-SA was highly expressed in the late-larval fat body, followed by hemocytes, and gut. Interestingly, following Escherichia coli, Staphylococcus aureus, and Candida albicans infections, the mRNA level of TmPGRP-SA was significantly upregulated in both the fat body and gut. TmPGRP-SA silencing had a significant effect on the mortality rates for all the microbes tested. Moreover, TmPGRP-SA is required for regulating the expression of eight AMP genes namely TmTenecin-1, -2, and -4; TmDefensin-1 and -2; TmColeoptericin-1; and TmAttacin-1b and -2 in the fat body in response to E. coli and S. aureus infections. TmPGRP-SA is essential for the transcription of TmTenecin-2, -4; TmDefensin-2; TmColeoptericin-1, -2; and TmAttacin-1a, -1b, and -2 in the gut upon E. coli and C. albicans infections. However, TmPGRP-SA does not regulate AMP expression in the hemocytes. Additionally, TmDorsal isoform X2, a downstream Toll transcription factor, was downregulated in TmPGRP-SA-silenced larval fat body following E. coli and S. aureus challenges, and in the gut following E. coli and C. albicans challenges.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32204438</pmid><doi>10.3390/ijms21062113</doi><orcidid>https://orcid.org/0000-0002-0119-0737</orcidid><orcidid>https://orcid.org/0000-0002-3621-046X</orcidid><orcidid>https://orcid.org/0000-0002-5482-1846</orcidid><orcidid>https://orcid.org/0000-0002-9277-5772</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-03, Vol.21 (6), p.2113 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_89e64d4d8bfe44489f48d3c87618f5c0 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Amino acids Antiinfectives and antibacterials Antimicrobial agents antimicrobial peptide Antimicrobial peptides Bacteria Binding sites Candida albicans Escherichia coli expression pattern Fat body Fruit flies Functional analysis Fungi Gene expression Gram-positive bacteria Hemocytes Immune response Insects nuclear factor κb Pathogens Peptides Peptidoglycans Phylogenetics Proteins Staphylococcus aureus Tenebrio molitor tmpgrp-sa |
title | TmPGRP-SA regulates Antimicrobial Response to Bacteria and Fungi in the Fat Body and Gut of Tenebrio molitor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TmPGRP-SA%20regulates%20Antimicrobial%20Response%20to%20Bacteria%20and%20Fungi%20in%20the%20Fat%20Body%20and%20Gut%20of%20Tenebrio%20molitor&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Keshavarz,%20Maryam&rft.date=2020-03-19&rft.volume=21&rft.issue=6&rft.spage=2113&rft.pages=2113-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21062113&rft_dat=%3Cproquest_doaj_%3E2382686765%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-5ca5ef362cf46349488954647fa6c8ee463181622d3d283a44b29b04338155a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2382243785&rft_id=info:pmid/32204438&rfr_iscdi=true |