Loading…
ParB spreading on DNA requires cytidine triphosphate in vitro
In all living organisms, it is essential to transmit genetic information faithfully to the next generation. The SMC-ParAB- system is widely employed for chromosome segregation in bacteria. A DNA-binding protein ParB nucleates on sites and must associate with neighboring DNA, a process known as sprea...
Saved in:
Published in: | eLife 2020-02, Vol.9 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c642t-1da2c81e5fbd47e4d48830a3d5ce4da6a344bd7c67dd4ce591bb23fd8519c6e13 |
---|---|
cites | cdi_FETCH-LOGICAL-c642t-1da2c81e5fbd47e4d48830a3d5ce4da6a344bd7c67dd4ce591bb23fd8519c6e13 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 9 |
creator | Jalal, Adam Sb Tran, Ngat T Le, Tung Bk |
description | In all living organisms, it is essential to transmit genetic information faithfully to the next generation. The SMC-ParAB-
system is widely employed for chromosome segregation in bacteria. A DNA-binding protein ParB nucleates on
sites and must associate with neighboring DNA, a process known as spreading, to enable efficient chromosome segregation. Despite its importance, how the initial few ParB molecules nucleating at
sites recruit hundreds of further ParB to spread is not fully understood. Here, we reconstitute a
-dependent ParB spreading event using purified proteins from
and show that CTP is required for spreading. We further show that ParB spreading requires a closed DNA substrate, and a DNA-binding transcriptional regulator can act as a roadblock to attenuate spreading unidirectionally in vitro. Our biochemical reconstitutions recapitulate many observed in vivo properties of ParB and opens up avenues to investigate the interactions between ParB-
with ParA and SMC. |
doi_str_mv | 10.7554/elife.53515 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_89ec659091f94bb2964188f8e3d92e29</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A616108542</galeid><doaj_id>oai_doaj_org_article_89ec659091f94bb2964188f8e3d92e29</doaj_id><sourcerecordid>A616108542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-1da2c81e5fbd47e4d48830a3d5ce4da6a344bd7c67dd4ce591bb23fd8519c6e13</originalsourceid><addsrcrecordid>eNptkltvFCEUgCfGxjZtn3w3k_iiMbvCAAM8aLLW2yYbNV4S3wgDZ3bZzA5TYBr772W7tXaM8MDt4wMOpygeYzTnjNGX0LkW5owwzB4UJxViaIYE_fnwXv-4OI9xi3LhVAgsHxXHpEKcC0ZPildfdHhTxiGAtq5fl74v335alAEuRxcgluY6ubwAZQpu2Pg4bHSC0vXllUvBnxVHre4inN-2p8WP9---X3ycrT5_WF4sVjNT0yrNsNWVERhY21jKgdp8D4I0sczkga41obSx3NTcWmqASdw0FWmtYFiaGjA5LZYHr_V6q4bgdjpcK6-dupnwYa10SM50oIQEUzOJJG4lzRpZUyxEK4BYWUEls-v1wTWMzQ6sgT4F3U2k05XebdTaXymOGJFyL3h2Kwj-coSY1M5FA12ne_BjVBVhkkhG-P7eT_9Bt34MfQ5VpgTlNCvZX2qt8wNc3_p8rtlL1aLGNUb5p6pMzf9D5Wph54zvoXV5frLh-WRDZhL8Sms9xqiW375O2RcH1gQfY4D2Lh4YqX2iKVjlRFM3iZbpJ_dDeMf-SSvyG8AKy8M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384740535</pqid></control><display><type>article</type><title>ParB spreading on DNA requires cytidine triphosphate in vitro</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Jalal, Adam Sb ; Tran, Ngat T ; Le, Tung Bk</creator><creatorcontrib>Jalal, Adam Sb ; Tran, Ngat T ; Le, Tung Bk</creatorcontrib><description>In all living organisms, it is essential to transmit genetic information faithfully to the next generation. The SMC-ParAB-
system is widely employed for chromosome segregation in bacteria. A DNA-binding protein ParB nucleates on
sites and must associate with neighboring DNA, a process known as spreading, to enable efficient chromosome segregation. Despite its importance, how the initial few ParB molecules nucleating at
sites recruit hundreds of further ParB to spread is not fully understood. Here, we reconstitute a
-dependent ParB spreading event using purified proteins from
and show that CTP is required for spreading. We further show that ParB spreading requires a closed DNA substrate, and a DNA-binding transcriptional regulator can act as a roadblock to attenuate spreading unidirectionally in vitro. Our biochemical reconstitutions recapitulate many observed in vivo properties of ParB and opens up avenues to investigate the interactions between ParB-
with ParA and SMC.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/elife.53515</identifier><identifier>PMID: 32077854</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Bacteria ; Bacterial genetics ; Bacterial Proteins - metabolism ; Binding proteins ; Binding sites ; Caulobacter crescentus ; Caulobacter crescentus - metabolism ; chromosome organization ; chromosome segregation ; Chromosomes ; Chromosomes and Gene Expression ; CTP ; Cytidine triphosphate ; Cytidine Triphosphate - metabolism ; Deoxyribonucleic acid ; DNA ; DNA Primase - metabolism ; DNA, Bacterial - metabolism ; DNA-binding protein ; DNA-Binding Proteins - metabolism ; Hydrolysis ; Microbiology and Infectious Disease ; ParB-parS ; Protein binding ; Proteins ; Spreading ; Transcription ; Transcription (Genetics)</subject><ispartof>eLife, 2020-02, Vol.9</ispartof><rights>2020, Jalal et al.</rights><rights>COPYRIGHT 2020 eLife Science Publications, Ltd.</rights><rights>2020, Jalal et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020, Jalal et al 2020 Jalal et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-1da2c81e5fbd47e4d48830a3d5ce4da6a344bd7c67dd4ce591bb23fd8519c6e13</citedby><cites>FETCH-LOGICAL-c642t-1da2c81e5fbd47e4d48830a3d5ce4da6a344bd7c67dd4ce591bb23fd8519c6e13</cites><orcidid>0000-0001-7794-8834 ; 0000-0002-7186-3976 ; 0000-0003-4764-8851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2384740535/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2384740535?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32077854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jalal, Adam Sb</creatorcontrib><creatorcontrib>Tran, Ngat T</creatorcontrib><creatorcontrib>Le, Tung Bk</creatorcontrib><title>ParB spreading on DNA requires cytidine triphosphate in vitro</title><title>eLife</title><addtitle>Elife</addtitle><description>In all living organisms, it is essential to transmit genetic information faithfully to the next generation. The SMC-ParAB-
system is widely employed for chromosome segregation in bacteria. A DNA-binding protein ParB nucleates on
sites and must associate with neighboring DNA, a process known as spreading, to enable efficient chromosome segregation. Despite its importance, how the initial few ParB molecules nucleating at
sites recruit hundreds of further ParB to spread is not fully understood. Here, we reconstitute a
-dependent ParB spreading event using purified proteins from
and show that CTP is required for spreading. We further show that ParB spreading requires a closed DNA substrate, and a DNA-binding transcriptional regulator can act as a roadblock to attenuate spreading unidirectionally in vitro. Our biochemical reconstitutions recapitulate many observed in vivo properties of ParB and opens up avenues to investigate the interactions between ParB-
with ParA and SMC.</description><subject>Bacteria</subject><subject>Bacterial genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding proteins</subject><subject>Binding sites</subject><subject>Caulobacter crescentus</subject><subject>Caulobacter crescentus - metabolism</subject><subject>chromosome organization</subject><subject>chromosome segregation</subject><subject>Chromosomes</subject><subject>Chromosomes and Gene Expression</subject><subject>CTP</subject><subject>Cytidine triphosphate</subject><subject>Cytidine Triphosphate - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Primase - metabolism</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-binding protein</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Hydrolysis</subject><subject>Microbiology and Infectious Disease</subject><subject>ParB-parS</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Spreading</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkltvFCEUgCfGxjZtn3w3k_iiMbvCAAM8aLLW2yYbNV4S3wgDZ3bZzA5TYBr772W7tXaM8MDt4wMOpygeYzTnjNGX0LkW5owwzB4UJxViaIYE_fnwXv-4OI9xi3LhVAgsHxXHpEKcC0ZPildfdHhTxiGAtq5fl74v335alAEuRxcgluY6ubwAZQpu2Pg4bHSC0vXllUvBnxVHre4inN-2p8WP9---X3ycrT5_WF4sVjNT0yrNsNWVERhY21jKgdp8D4I0sczkga41obSx3NTcWmqASdw0FWmtYFiaGjA5LZYHr_V6q4bgdjpcK6-dupnwYa10SM50oIQEUzOJJG4lzRpZUyxEK4BYWUEls-v1wTWMzQ6sgT4F3U2k05XebdTaXymOGJFyL3h2Kwj-coSY1M5FA12ne_BjVBVhkkhG-P7eT_9Bt34MfQ5VpgTlNCvZX2qt8wNc3_p8rtlL1aLGNUb5p6pMzf9D5Wph54zvoXV5frLh-WRDZhL8Sms9xqiW375O2RcH1gQfY4D2Lh4YqX2iKVjlRFM3iZbpJ_dDeMf-SSvyG8AKy8M</recordid><startdate>20200220</startdate><enddate>20200220</enddate><creator>Jalal, Adam Sb</creator><creator>Tran, Ngat T</creator><creator>Le, Tung Bk</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7794-8834</orcidid><orcidid>https://orcid.org/0000-0002-7186-3976</orcidid><orcidid>https://orcid.org/0000-0003-4764-8851</orcidid></search><sort><creationdate>20200220</creationdate><title>ParB spreading on DNA requires cytidine triphosphate in vitro</title><author>Jalal, Adam Sb ; Tran, Ngat T ; Le, Tung Bk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-1da2c81e5fbd47e4d48830a3d5ce4da6a344bd7c67dd4ce591bb23fd8519c6e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacteria</topic><topic>Bacterial genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding proteins</topic><topic>Binding sites</topic><topic>Caulobacter crescentus</topic><topic>Caulobacter crescentus - metabolism</topic><topic>chromosome organization</topic><topic>chromosome segregation</topic><topic>Chromosomes</topic><topic>Chromosomes and Gene Expression</topic><topic>CTP</topic><topic>Cytidine triphosphate</topic><topic>Cytidine Triphosphate - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Primase - metabolism</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-binding protein</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Hydrolysis</topic><topic>Microbiology and Infectious Disease</topic><topic>ParB-parS</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Spreading</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalal, Adam Sb</creatorcontrib><creatorcontrib>Tran, Ngat T</creatorcontrib><creatorcontrib>Le, Tung Bk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalal, Adam Sb</au><au>Tran, Ngat T</au><au>Le, Tung Bk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ParB spreading on DNA requires cytidine triphosphate in vitro</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2020-02-20</date><risdate>2020</risdate><volume>9</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>In all living organisms, it is essential to transmit genetic information faithfully to the next generation. The SMC-ParAB-
system is widely employed for chromosome segregation in bacteria. A DNA-binding protein ParB nucleates on
sites and must associate with neighboring DNA, a process known as spreading, to enable efficient chromosome segregation. Despite its importance, how the initial few ParB molecules nucleating at
sites recruit hundreds of further ParB to spread is not fully understood. Here, we reconstitute a
-dependent ParB spreading event using purified proteins from
and show that CTP is required for spreading. We further show that ParB spreading requires a closed DNA substrate, and a DNA-binding transcriptional regulator can act as a roadblock to attenuate spreading unidirectionally in vitro. Our biochemical reconstitutions recapitulate many observed in vivo properties of ParB and opens up avenues to investigate the interactions between ParB-
with ParA and SMC.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>32077854</pmid><doi>10.7554/elife.53515</doi><orcidid>https://orcid.org/0000-0001-7794-8834</orcidid><orcidid>https://orcid.org/0000-0002-7186-3976</orcidid><orcidid>https://orcid.org/0000-0003-4764-8851</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2020-02, Vol.9 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_89ec659091f94bb2964188f8e3d92e29 |
source | Publicly Available Content Database; PubMed Central |
subjects | Bacteria Bacterial genetics Bacterial Proteins - metabolism Binding proteins Binding sites Caulobacter crescentus Caulobacter crescentus - metabolism chromosome organization chromosome segregation Chromosomes Chromosomes and Gene Expression CTP Cytidine triphosphate Cytidine Triphosphate - metabolism Deoxyribonucleic acid DNA DNA Primase - metabolism DNA, Bacterial - metabolism DNA-binding protein DNA-Binding Proteins - metabolism Hydrolysis Microbiology and Infectious Disease ParB-parS Protein binding Proteins Spreading Transcription Transcription (Genetics) |
title | ParB spreading on DNA requires cytidine triphosphate in vitro |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ParB%20spreading%20on%20DNA%20requires%20cytidine%20triphosphate%20in%20vitro&rft.jtitle=eLife&rft.au=Jalal,%20Adam%20Sb&rft.date=2020-02-20&rft.volume=9&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/elife.53515&rft_dat=%3Cgale_doaj_%3EA616108542%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c642t-1da2c81e5fbd47e4d48830a3d5ce4da6a344bd7c67dd4ce591bb23fd8519c6e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2384740535&rft_id=info:pmid/32077854&rft_galeid=A616108542&rfr_iscdi=true |