Loading…
Metabolic constraints drive self-organization of specialized cell groups
How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify...
Saved in:
Published in: | eLife 2019-06, Vol.8 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-e2577e573482f34da5073b8bcae74a39683110fe6578d3b598d78be7df4b21563 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-e2577e573482f34da5073b8bcae74a39683110fe6578d3b598d78be7df4b21563 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 8 |
creator | Varahan, Sriram Walvekar, Adhish Sinha, Vaibhhav Krishna, Sandeep Laxman, Sunil |
description | How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such self-assembly. Beginning in a uniformly gluconeogenic state, cells exhibiting a contrary, high pentose phosphate pathway activity state, spontaneously appear and proliferate, in a spatially constrained manner. Gluconeogenic cells in the colony produce and provide a resource, which we identify as trehalose. Above threshold concentrations of external trehalose, cells switch to the new metabolic state and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states. |
doi_str_mv | 10.7554/eLife.46735 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_89ffca5e54114ef9a02ef9481ac4a841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_89ffca5e54114ef9a02ef9481ac4a841</doaj_id><sourcerecordid>2267350036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-e2577e573482f34da5073b8bcae74a39683110fe6578d3b598d78be7df4b21563</originalsourceid><addsrcrecordid>eNpdkc9rFDEcxYMottSevMuAF0Gm5ncyF0GK2sKKFwVv4TuZb9Yss5M1mSm0f73Z3Vpac0hC8uHxvu8R8prRC6OU_ICrGPBCaiPUM3LKqaIttfLX80f3E3JeyobWZaS1rHtJTgTjkknNT8nVN5yhT2P0jU9TmTPEaS7NkOMNNgXH0Ka8hinewRzT1KTQlB36CGO8w6HxOI7NOqdlV16RFwHGguf35xn5-eXzj8urdvX96_Xlp1XrJVVzi1wZg8oIaXkQcgBFjeht7wGNBNFpKxijAbUydhC96uxgbI9mCLLnTGlxRq6PukOCjdvluIV86xJEd3iobh3kOfoRne1C8KBQScYkhg4or7u0DLwEK1nV-njU2i39FgePU51_fCL69GeKv9063TitVQ3SVoF39wI5_VmwzG4byz4UmDAtxXGuJRdcU17Rt_-hm7TkqUa1p2p9lIr9dO-PlM-plIzhwQyjbl-4OxTuDoVX-s1j_w_sv3rFXwgFpvA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267350036</pqid></control><display><type>article</type><title>Metabolic constraints drive self-organization of specialized cell groups</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Varahan, Sriram ; Walvekar, Adhish ; Sinha, Vaibhhav ; Krishna, Sandeep ; Laxman, Sunil</creator><creatorcontrib>Varahan, Sriram ; Walvekar, Adhish ; Sinha, Vaibhhav ; Krishna, Sandeep ; Laxman, Sunil</creatorcontrib><description>How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such self-assembly. Beginning in a uniformly gluconeogenic state, cells exhibiting a contrary, high pentose phosphate pathway activity state, spontaneously appear and proliferate, in a spatially constrained manner. Gluconeogenic cells in the colony produce and provide a resource, which we identify as trehalose. Above threshold concentrations of external trehalose, cells switch to the new metabolic state and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.46735</identifier><identifier>PMID: 31241462</identifier><language>eng</language><publisher>England: eLife Sciences Publications Ltd</publisher><subject>Amino acids ; Cell Biology ; cell states ; Colonies ; Gene expression ; gluconeogenesis ; Glucose ; Growth rate ; Light ; Metabolism ; Metabolites ; Models, Biological ; Morphology ; Pentose phosphate pathway ; Physics of Living Systems ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Self-assembly ; self-organization ; Trehalose ; Trehalose - metabolism ; yeast</subject><ispartof>eLife, 2019-06, Vol.8</ispartof><rights>2019, Varahan et al.</rights><rights>2019, Varahan et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019, Varahan et al 2019 Varahan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-e2577e573482f34da5073b8bcae74a39683110fe6578d3b598d78be7df4b21563</citedby><cites>FETCH-LOGICAL-c405t-e2577e573482f34da5073b8bcae74a39683110fe6578d3b598d78be7df4b21563</cites><orcidid>0000-0001-7344-7653 ; 0000-0002-3609-4032 ; 0000-0002-0861-5080 ; 0000-0002-5169-5485 ; 0000-0002-0581-173X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2267350036/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2267350036?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31241462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Varahan, Sriram</creatorcontrib><creatorcontrib>Walvekar, Adhish</creatorcontrib><creatorcontrib>Sinha, Vaibhhav</creatorcontrib><creatorcontrib>Krishna, Sandeep</creatorcontrib><creatorcontrib>Laxman, Sunil</creatorcontrib><title>Metabolic constraints drive self-organization of specialized cell groups</title><title>eLife</title><addtitle>Elife</addtitle><description>How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such self-assembly. Beginning in a uniformly gluconeogenic state, cells exhibiting a contrary, high pentose phosphate pathway activity state, spontaneously appear and proliferate, in a spatially constrained manner. Gluconeogenic cells in the colony produce and provide a resource, which we identify as trehalose. Above threshold concentrations of external trehalose, cells switch to the new metabolic state and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states.</description><subject>Amino acids</subject><subject>Cell Biology</subject><subject>cell states</subject><subject>Colonies</subject><subject>Gene expression</subject><subject>gluconeogenesis</subject><subject>Glucose</subject><subject>Growth rate</subject><subject>Light</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Models, Biological</subject><subject>Morphology</subject><subject>Pentose phosphate pathway</subject><subject>Physics of Living Systems</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Self-assembly</subject><subject>self-organization</subject><subject>Trehalose</subject><subject>Trehalose - metabolism</subject><subject>yeast</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc9rFDEcxYMottSevMuAF0Gm5ncyF0GK2sKKFwVv4TuZb9Yss5M1mSm0f73Z3Vpac0hC8uHxvu8R8prRC6OU_ICrGPBCaiPUM3LKqaIttfLX80f3E3JeyobWZaS1rHtJTgTjkknNT8nVN5yhT2P0jU9TmTPEaS7NkOMNNgXH0Ka8hinewRzT1KTQlB36CGO8w6HxOI7NOqdlV16RFwHGguf35xn5-eXzj8urdvX96_Xlp1XrJVVzi1wZg8oIaXkQcgBFjeht7wGNBNFpKxijAbUydhC96uxgbI9mCLLnTGlxRq6PukOCjdvluIV86xJEd3iobh3kOfoRne1C8KBQScYkhg4or7u0DLwEK1nV-njU2i39FgePU51_fCL69GeKv9063TitVQ3SVoF39wI5_VmwzG4byz4UmDAtxXGuJRdcU17Rt_-hm7TkqUa1p2p9lIr9dO-PlM-plIzhwQyjbl-4OxTuDoVX-s1j_w_sv3rFXwgFpvA</recordid><startdate>20190626</startdate><enddate>20190626</enddate><creator>Varahan, Sriram</creator><creator>Walvekar, Adhish</creator><creator>Sinha, Vaibhhav</creator><creator>Krishna, Sandeep</creator><creator>Laxman, Sunil</creator><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7344-7653</orcidid><orcidid>https://orcid.org/0000-0002-3609-4032</orcidid><orcidid>https://orcid.org/0000-0002-0861-5080</orcidid><orcidid>https://orcid.org/0000-0002-5169-5485</orcidid><orcidid>https://orcid.org/0000-0002-0581-173X</orcidid></search><sort><creationdate>20190626</creationdate><title>Metabolic constraints drive self-organization of specialized cell groups</title><author>Varahan, Sriram ; Walvekar, Adhish ; Sinha, Vaibhhav ; Krishna, Sandeep ; Laxman, Sunil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-e2577e573482f34da5073b8bcae74a39683110fe6578d3b598d78be7df4b21563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acids</topic><topic>Cell Biology</topic><topic>cell states</topic><topic>Colonies</topic><topic>Gene expression</topic><topic>gluconeogenesis</topic><topic>Glucose</topic><topic>Growth rate</topic><topic>Light</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Models, Biological</topic><topic>Morphology</topic><topic>Pentose phosphate pathway</topic><topic>Physics of Living Systems</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Self-assembly</topic><topic>self-organization</topic><topic>Trehalose</topic><topic>Trehalose - metabolism</topic><topic>yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varahan, Sriram</creatorcontrib><creatorcontrib>Walvekar, Adhish</creatorcontrib><creatorcontrib>Sinha, Vaibhhav</creatorcontrib><creatorcontrib>Krishna, Sandeep</creatorcontrib><creatorcontrib>Laxman, Sunil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varahan, Sriram</au><au>Walvekar, Adhish</au><au>Sinha, Vaibhhav</au><au>Krishna, Sandeep</au><au>Laxman, Sunil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic constraints drive self-organization of specialized cell groups</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2019-06-26</date><risdate>2019</risdate><volume>8</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such self-assembly. Beginning in a uniformly gluconeogenic state, cells exhibiting a contrary, high pentose phosphate pathway activity state, spontaneously appear and proliferate, in a spatially constrained manner. Gluconeogenic cells in the colony produce and provide a resource, which we identify as trehalose. Above threshold concentrations of external trehalose, cells switch to the new metabolic state and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states.</abstract><cop>England</cop><pub>eLife Sciences Publications Ltd</pub><pmid>31241462</pmid><doi>10.7554/eLife.46735</doi><orcidid>https://orcid.org/0000-0001-7344-7653</orcidid><orcidid>https://orcid.org/0000-0002-3609-4032</orcidid><orcidid>https://orcid.org/0000-0002-0861-5080</orcidid><orcidid>https://orcid.org/0000-0002-5169-5485</orcidid><orcidid>https://orcid.org/0000-0002-0581-173X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2019-06, Vol.8 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_89ffca5e54114ef9a02ef9481ac4a841 |
source | Publicly Available Content Database; PubMed Central |
subjects | Amino acids Cell Biology cell states Colonies Gene expression gluconeogenesis Glucose Growth rate Light Metabolism Metabolites Models, Biological Morphology Pentose phosphate pathway Physics of Living Systems Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Self-assembly self-organization Trehalose Trehalose - metabolism yeast |
title | Metabolic constraints drive self-organization of specialized cell groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20constraints%20drive%20self-organization%20of%20specialized%20cell%20groups&rft.jtitle=eLife&rft.au=Varahan,%20Sriram&rft.date=2019-06-26&rft.volume=8&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.46735&rft_dat=%3Cproquest_doaj_%3E2267350036%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-e2577e573482f34da5073b8bcae74a39683110fe6578d3b598d78be7df4b21563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267350036&rft_id=info:pmid/31241462&rfr_iscdi=true |