Loading…

Metabolic constraints drive self-organization of specialized cell groups

How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2019-06, Vol.8
Main Authors: Varahan, Sriram, Walvekar, Adhish, Sinha, Vaibhhav, Krishna, Sandeep, Laxman, Sunil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-e2577e573482f34da5073b8bcae74a39683110fe6578d3b598d78be7df4b21563
cites cdi_FETCH-LOGICAL-c405t-e2577e573482f34da5073b8bcae74a39683110fe6578d3b598d78be7df4b21563
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 8
creator Varahan, Sriram
Walvekar, Adhish
Sinha, Vaibhhav
Krishna, Sandeep
Laxman, Sunil
description How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such self-assembly. Beginning in a uniformly gluconeogenic state, cells exhibiting a contrary, high pentose phosphate pathway activity state, spontaneously appear and proliferate, in a spatially constrained manner. Gluconeogenic cells in the colony produce and provide a resource, which we identify as trehalose. Above threshold concentrations of external trehalose, cells switch to the new metabolic state and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states.
doi_str_mv 10.7554/eLife.46735
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_89ffca5e54114ef9a02ef9481ac4a841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_89ffca5e54114ef9a02ef9481ac4a841</doaj_id><sourcerecordid>2267350036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-e2577e573482f34da5073b8bcae74a39683110fe6578d3b598d78be7df4b21563</originalsourceid><addsrcrecordid>eNpdkc9rFDEcxYMottSevMuAF0Gm5ncyF0GK2sKKFwVv4TuZb9Yss5M1mSm0f73Z3Vpac0hC8uHxvu8R8prRC6OU_ICrGPBCaiPUM3LKqaIttfLX80f3E3JeyobWZaS1rHtJTgTjkknNT8nVN5yhT2P0jU9TmTPEaS7NkOMNNgXH0Ka8hinewRzT1KTQlB36CGO8w6HxOI7NOqdlV16RFwHGguf35xn5-eXzj8urdvX96_Xlp1XrJVVzi1wZg8oIaXkQcgBFjeht7wGNBNFpKxijAbUydhC96uxgbI9mCLLnTGlxRq6PukOCjdvluIV86xJEd3iobh3kOfoRne1C8KBQScYkhg4or7u0DLwEK1nV-njU2i39FgePU51_fCL69GeKv9063TitVQ3SVoF39wI5_VmwzG4byz4UmDAtxXGuJRdcU17Rt_-hm7TkqUa1p2p9lIr9dO-PlM-plIzhwQyjbl-4OxTuDoVX-s1j_w_sv3rFXwgFpvA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267350036</pqid></control><display><type>article</type><title>Metabolic constraints drive self-organization of specialized cell groups</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Varahan, Sriram ; Walvekar, Adhish ; Sinha, Vaibhhav ; Krishna, Sandeep ; Laxman, Sunil</creator><creatorcontrib>Varahan, Sriram ; Walvekar, Adhish ; Sinha, Vaibhhav ; Krishna, Sandeep ; Laxman, Sunil</creatorcontrib><description>How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such self-assembly. Beginning in a uniformly gluconeogenic state, cells exhibiting a contrary, high pentose phosphate pathway activity state, spontaneously appear and proliferate, in a spatially constrained manner. Gluconeogenic cells in the colony produce and provide a resource, which we identify as trehalose. Above threshold concentrations of external trehalose, cells switch to the new metabolic state and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.46735</identifier><identifier>PMID: 31241462</identifier><language>eng</language><publisher>England: eLife Sciences Publications Ltd</publisher><subject>Amino acids ; Cell Biology ; cell states ; Colonies ; Gene expression ; gluconeogenesis ; Glucose ; Growth rate ; Light ; Metabolism ; Metabolites ; Models, Biological ; Morphology ; Pentose phosphate pathway ; Physics of Living Systems ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Self-assembly ; self-organization ; Trehalose ; Trehalose - metabolism ; yeast</subject><ispartof>eLife, 2019-06, Vol.8</ispartof><rights>2019, Varahan et al.</rights><rights>2019, Varahan et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019, Varahan et al 2019 Varahan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-e2577e573482f34da5073b8bcae74a39683110fe6578d3b598d78be7df4b21563</citedby><cites>FETCH-LOGICAL-c405t-e2577e573482f34da5073b8bcae74a39683110fe6578d3b598d78be7df4b21563</cites><orcidid>0000-0001-7344-7653 ; 0000-0002-3609-4032 ; 0000-0002-0861-5080 ; 0000-0002-5169-5485 ; 0000-0002-0581-173X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2267350036/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2267350036?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31241462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Varahan, Sriram</creatorcontrib><creatorcontrib>Walvekar, Adhish</creatorcontrib><creatorcontrib>Sinha, Vaibhhav</creatorcontrib><creatorcontrib>Krishna, Sandeep</creatorcontrib><creatorcontrib>Laxman, Sunil</creatorcontrib><title>Metabolic constraints drive self-organization of specialized cell groups</title><title>eLife</title><addtitle>Elife</addtitle><description>How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such self-assembly. Beginning in a uniformly gluconeogenic state, cells exhibiting a contrary, high pentose phosphate pathway activity state, spontaneously appear and proliferate, in a spatially constrained manner. Gluconeogenic cells in the colony produce and provide a resource, which we identify as trehalose. Above threshold concentrations of external trehalose, cells switch to the new metabolic state and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states.</description><subject>Amino acids</subject><subject>Cell Biology</subject><subject>cell states</subject><subject>Colonies</subject><subject>Gene expression</subject><subject>gluconeogenesis</subject><subject>Glucose</subject><subject>Growth rate</subject><subject>Light</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Models, Biological</subject><subject>Morphology</subject><subject>Pentose phosphate pathway</subject><subject>Physics of Living Systems</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Self-assembly</subject><subject>self-organization</subject><subject>Trehalose</subject><subject>Trehalose - metabolism</subject><subject>yeast</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc9rFDEcxYMottSevMuAF0Gm5ncyF0GK2sKKFwVv4TuZb9Yss5M1mSm0f73Z3Vpac0hC8uHxvu8R8prRC6OU_ICrGPBCaiPUM3LKqaIttfLX80f3E3JeyobWZaS1rHtJTgTjkknNT8nVN5yhT2P0jU9TmTPEaS7NkOMNNgXH0Ka8hinewRzT1KTQlB36CGO8w6HxOI7NOqdlV16RFwHGguf35xn5-eXzj8urdvX96_Xlp1XrJVVzi1wZg8oIaXkQcgBFjeht7wGNBNFpKxijAbUydhC96uxgbI9mCLLnTGlxRq6PukOCjdvluIV86xJEd3iobh3kOfoRne1C8KBQScYkhg4or7u0DLwEK1nV-njU2i39FgePU51_fCL69GeKv9063TitVQ3SVoF39wI5_VmwzG4byz4UmDAtxXGuJRdcU17Rt_-hm7TkqUa1p2p9lIr9dO-PlM-plIzhwQyjbl-4OxTuDoVX-s1j_w_sv3rFXwgFpvA</recordid><startdate>20190626</startdate><enddate>20190626</enddate><creator>Varahan, Sriram</creator><creator>Walvekar, Adhish</creator><creator>Sinha, Vaibhhav</creator><creator>Krishna, Sandeep</creator><creator>Laxman, Sunil</creator><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7344-7653</orcidid><orcidid>https://orcid.org/0000-0002-3609-4032</orcidid><orcidid>https://orcid.org/0000-0002-0861-5080</orcidid><orcidid>https://orcid.org/0000-0002-5169-5485</orcidid><orcidid>https://orcid.org/0000-0002-0581-173X</orcidid></search><sort><creationdate>20190626</creationdate><title>Metabolic constraints drive self-organization of specialized cell groups</title><author>Varahan, Sriram ; Walvekar, Adhish ; Sinha, Vaibhhav ; Krishna, Sandeep ; Laxman, Sunil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-e2577e573482f34da5073b8bcae74a39683110fe6578d3b598d78be7df4b21563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acids</topic><topic>Cell Biology</topic><topic>cell states</topic><topic>Colonies</topic><topic>Gene expression</topic><topic>gluconeogenesis</topic><topic>Glucose</topic><topic>Growth rate</topic><topic>Light</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Models, Biological</topic><topic>Morphology</topic><topic>Pentose phosphate pathway</topic><topic>Physics of Living Systems</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Self-assembly</topic><topic>self-organization</topic><topic>Trehalose</topic><topic>Trehalose - metabolism</topic><topic>yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varahan, Sriram</creatorcontrib><creatorcontrib>Walvekar, Adhish</creatorcontrib><creatorcontrib>Sinha, Vaibhhav</creatorcontrib><creatorcontrib>Krishna, Sandeep</creatorcontrib><creatorcontrib>Laxman, Sunil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varahan, Sriram</au><au>Walvekar, Adhish</au><au>Sinha, Vaibhhav</au><au>Krishna, Sandeep</au><au>Laxman, Sunil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic constraints drive self-organization of specialized cell groups</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2019-06-26</date><risdate>2019</risdate><volume>8</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such self-assembly. Beginning in a uniformly gluconeogenic state, cells exhibiting a contrary, high pentose phosphate pathway activity state, spontaneously appear and proliferate, in a spatially constrained manner. Gluconeogenic cells in the colony produce and provide a resource, which we identify as trehalose. Above threshold concentrations of external trehalose, cells switch to the new metabolic state and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states.</abstract><cop>England</cop><pub>eLife Sciences Publications Ltd</pub><pmid>31241462</pmid><doi>10.7554/eLife.46735</doi><orcidid>https://orcid.org/0000-0001-7344-7653</orcidid><orcidid>https://orcid.org/0000-0002-3609-4032</orcidid><orcidid>https://orcid.org/0000-0002-0861-5080</orcidid><orcidid>https://orcid.org/0000-0002-5169-5485</orcidid><orcidid>https://orcid.org/0000-0002-0581-173X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2019-06, Vol.8
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_89ffca5e54114ef9a02ef9481ac4a841
source Publicly Available Content Database; PubMed Central
subjects Amino acids
Cell Biology
cell states
Colonies
Gene expression
gluconeogenesis
Glucose
Growth rate
Light
Metabolism
Metabolites
Models, Biological
Morphology
Pentose phosphate pathway
Physics of Living Systems
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Self-assembly
self-organization
Trehalose
Trehalose - metabolism
yeast
title Metabolic constraints drive self-organization of specialized cell groups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20constraints%20drive%20self-organization%20of%20specialized%20cell%20groups&rft.jtitle=eLife&rft.au=Varahan,%20Sriram&rft.date=2019-06-26&rft.volume=8&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.46735&rft_dat=%3Cproquest_doaj_%3E2267350036%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-e2577e573482f34da5073b8bcae74a39683110fe6578d3b598d78be7df4b21563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267350036&rft_id=info:pmid/31241462&rfr_iscdi=true