Loading…

Public Perception of Autonomous Mobility Using ML-Based Sentiment Analysis over Social Media Data

The purpose of this article is to present a framework for capturing and analyzing social media posts using a sentiment analysis tool to determine the views of the general public towards autonomous mobility. The paper presents the systems used and the results of this analysis, which was performed on...

Full description

Saved in:
Bibliographic Details
Published in:Logistics 2020-06, Vol.4 (2), p.12
Main Authors: Bakalos, Nikolaos, Papadakis, Nikolaos, Litke, Antonios
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this article is to present a framework for capturing and analyzing social media posts using a sentiment analysis tool to determine the views of the general public towards autonomous mobility. The paper presents the systems used and the results of this analysis, which was performed on social media posts from Twitter and Reddit. To achieve this, a specialized lexicon of terms was used to query social media content from the dedicated application programming interfaces (APIs) that the aforementioned social media platforms provide. The captured posts were then analyzed using a sentiment analysis framework, developed using state-of-the-art deep machine learning (ML) models. This framework provides labeling for the captured posts based on their content (i.e., classifies them as positive or negative opinions). The results of this classification were used to identify fears and autonomous mobility aspects that affect negative opinions. This method can provide a more realistic view of the general public’s perception of automated mobility, as it has the ability to analyze thousands of opinions and encapsulate the users’ opinion in a semi-automated way.
ISSN:2305-6290
2305-6290
DOI:10.3390/logistics4020012