Loading…
Commitment Between Roughness and Crystallite Size in the Vanadium Oxide Thin Film opto-electrochemical Properties
The V2O5 thin films has been widely studied because it has application as ionic host in electrochromic and lithium-ion batteries, two technologies that have an intimate connection with sustainability as substitutes for fossil energies and as agents for improving energy efficiency. In electrochromic...
Saved in:
Published in: | Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2019-01, Vol.22 (1), p.1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The V2O5 thin films has been widely studied because it has application as ionic host in electrochromic and lithium-ion batteries, two technologies that have an intimate connection with sustainability as substitutes for fossil energies and as agents for improving energy efficiency. In electrochromic technology, V2O5 is applied as a passive electrode due to its high transmittance and small contrast, and its reversibility on electrochemical reactions. To contribute to increase the optical and charge efficiency of V2O5 thin film passive electrodes, were investigated in this work the influence of the morphological properties, crystallite size and roughness, on the reversible specific charge capacity and the respective optical responses. The films morphological properties were modified by varying their thickness to the nanoscale. The films were deposited by thermal evaporation from powdered V2O5. The crystallite size and surface roughness were measured respectively by XRD and AFM. The results showed that the charge capacity is directly proportional to the surface roughness and inversely proportional to the crystallite size. The film optical contrast and the nominal transmittance shows to be improved according to their morphological properties. In conclusion, the V2O5 opto-electrochemical properties can be improved, increasing the efficiency on the light control processes. |
---|---|
ISSN: | 1516-1439 1980-5373 1980-5373 |
DOI: | 10.1590/1980-5373-mr-2018-0245 |