Loading…

Advancing biomedical substrate engineering: An eco-friendly route for synthesizing micro- and nanotextures on 3D printed Ti–6Al–4V

This study investigates the impact of a combined approach involving sandblasting and electrochemical surface treatment using a deep eutectic solvent Ethaline, a eutectic mixture of choline chloride and ethylene glycol, on the surface characteristics of Ti–6Al–4V biomedical substrates fabricated thro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research and technology 2024-01, Vol.28, p.2098-2115
Main Authors: Kityk, A., Hnatko, M., Pavlik, V., Balog, M., Šoltys, J., Labudova, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the impact of a combined approach involving sandblasting and electrochemical surface treatment using a deep eutectic solvent Ethaline, a eutectic mixture of choline chloride and ethylene glycol, on the surface characteristics of Ti–6Al–4V biomedical substrates fabricated through direct selective laser melting (DSLM). Research has focused on surface morphology, topography, chemical composition, and cell adhesion. The novel approach demonstrated the ability to create a hierarchical surface structure with both micro and nanopatterns. The rough edges resulting from the sandblasting process were effectively smoothed through subsequent electrochemical processing. Additionally, the issue of residual sand particles, which commonly arise in sandblasting procedures, was successfully addressed with the new method. The results indicated that Ti alloy samples subjected to sandblasting and electrochemical treatment in Ethaline exhibited improved surface hydrophilicity. In-vitro cell adhesion tests confirmed the potential for bio-inspired properties of DSLM-printed Ti–6Al–4V biomedical substrates achieved through the combination of sandblasting and electrochemical processing in Ethaline. [Display omitted]
ISSN:2238-7854
DOI:10.1016/j.jmrt.2023.12.164