Loading…

Comparison of TEC Calculations Based on Trimble, Javad, Leica, and Septentrio GNSS Receiver Data

A Global Navigation Satellite System (GNSS) receiver is, to some extent, a “black box” when its data is used for ionospheric studies. Our results based on Javad, Septentrio, Trimble, and Leica GNSS receivers have proven that the accuracy of the slant Total Electron Content (TEC) calculation can diff...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2020-10, Vol.12 (19), p.3268
Main Authors: Demyanov, Vladislav, Sergeeva, Maria, Fedorov, Mark, Ishina, Tatiana, Gatica-Acevedo, Victor Jose, Cabral-Cano, Enrique
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-94c5a2b5c2c377e3cb06b03e258651f142df64f8f4dee7a488a22fb56c3581f93
cites cdi_FETCH-LOGICAL-c361t-94c5a2b5c2c377e3cb06b03e258651f142df64f8f4dee7a488a22fb56c3581f93
container_end_page
container_issue 19
container_start_page 3268
container_title Remote sensing (Basel, Switzerland)
container_volume 12
creator Demyanov, Vladislav
Sergeeva, Maria
Fedorov, Mark
Ishina, Tatiana
Gatica-Acevedo, Victor Jose
Cabral-Cano, Enrique
description A Global Navigation Satellite System (GNSS) receiver is, to some extent, a “black box” when its data is used for ionospheric studies. Our results based on Javad, Septentrio, Trimble, and Leica GNSS receivers have proven that the accuracy of the slant Total Electron Content (TEC) calculation can differ significantly depending on the GNSS receiver type/model, because TEC measurements depend on the carrier phase tracking technique applied in a receiver. The correlation coefficient between carrier phase noise in L1 and L2 channels is considered as a possible indicator that shows if the L1-aided tracking technique or independent tracking is applied inside a receiver. An empirical model of the TEC noise component was provided to determine the TEC noise value in different types/models of GNSS receivers.
doi_str_mv 10.3390/rs12193268
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8a3a684ec9d3484d898c2b9f800d1ac1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8a3a684ec9d3484d898c2b9f800d1ac1</doaj_id><sourcerecordid>2550300526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-94c5a2b5c2c377e3cb06b03e258651f142df64f8f4dee7a488a22fb56c3581f93</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRUNQXf0HAN2k1123yqGu9URRsfY6zyUS2rJuabAX_vasVdV5mmDl8c-AUxRGjp0IYepYy48wIXuqtYo_TCR9Lbvj2v3m3OMx5SYcSghkq94rnKr6uIDU5diQGsphWpILWrVvom9hlcgEZPRmOi9S81i2OyB28gx-RGTYORgQ6T-a46rHrUxPJ9f18Th7RYfOOiVxCDwfFToA24-FP3y-erqaL6mY8e7i-rc5nYydK1o-NdAp4rRx3YjJB4Wpa1lQgV7pULDDJfShl0EF6xAlIrYHzUKvSCaVZMGK_uN1wfYSlXQ1uIX3YCI39XsT0YiH1jWvRahBQaonOeCG19Npox2sTNKWegWMD63jDWqX4tsbc22Vcp26wb7lSVFCqeDmoTjYql2LOCcPvV0btVyD2LxDxCUfKero</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550300526</pqid></control><display><type>article</type><title>Comparison of TEC Calculations Based on Trimble, Javad, Leica, and Septentrio GNSS Receiver Data</title><source>Publicly Available Content (ProQuest)</source><creator>Demyanov, Vladislav ; Sergeeva, Maria ; Fedorov, Mark ; Ishina, Tatiana ; Gatica-Acevedo, Victor Jose ; Cabral-Cano, Enrique</creator><creatorcontrib>Demyanov, Vladislav ; Sergeeva, Maria ; Fedorov, Mark ; Ishina, Tatiana ; Gatica-Acevedo, Victor Jose ; Cabral-Cano, Enrique</creatorcontrib><description>A Global Navigation Satellite System (GNSS) receiver is, to some extent, a “black box” when its data is used for ionospheric studies. Our results based on Javad, Septentrio, Trimble, and Leica GNSS receivers have proven that the accuracy of the slant Total Electron Content (TEC) calculation can differ significantly depending on the GNSS receiver type/model, because TEC measurements depend on the carrier phase tracking technique applied in a receiver. The correlation coefficient between carrier phase noise in L1 and L2 channels is considered as a possible indicator that shows if the L1-aided tracking technique or independent tracking is applied inside a receiver. An empirical model of the TEC noise component was provided to determine the TEC noise value in different types/models of GNSS receivers.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs12193268</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Correlation coefficient ; Correlation coefficients ; Experiments ; Global navigation satellite system ; GNSS receiver ; Ionosphere ; Javad ; Leica ; Noise ; Receivers ; Receivers &amp; amplifiers ; Septentrio ; Signal processing ; slant TEC ; Standard deviation ; Total Electron Content ; Tracking ; Trimble</subject><ispartof>Remote sensing (Basel, Switzerland), 2020-10, Vol.12 (19), p.3268</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-94c5a2b5c2c377e3cb06b03e258651f142df64f8f4dee7a488a22fb56c3581f93</citedby><cites>FETCH-LOGICAL-c361t-94c5a2b5c2c377e3cb06b03e258651f142df64f8f4dee7a488a22fb56c3581f93</cites><orcidid>0000-0003-2893-9522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550300526/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550300526?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Demyanov, Vladislav</creatorcontrib><creatorcontrib>Sergeeva, Maria</creatorcontrib><creatorcontrib>Fedorov, Mark</creatorcontrib><creatorcontrib>Ishina, Tatiana</creatorcontrib><creatorcontrib>Gatica-Acevedo, Victor Jose</creatorcontrib><creatorcontrib>Cabral-Cano, Enrique</creatorcontrib><title>Comparison of TEC Calculations Based on Trimble, Javad, Leica, and Septentrio GNSS Receiver Data</title><title>Remote sensing (Basel, Switzerland)</title><description>A Global Navigation Satellite System (GNSS) receiver is, to some extent, a “black box” when its data is used for ionospheric studies. Our results based on Javad, Septentrio, Trimble, and Leica GNSS receivers have proven that the accuracy of the slant Total Electron Content (TEC) calculation can differ significantly depending on the GNSS receiver type/model, because TEC measurements depend on the carrier phase tracking technique applied in a receiver. The correlation coefficient between carrier phase noise in L1 and L2 channels is considered as a possible indicator that shows if the L1-aided tracking technique or independent tracking is applied inside a receiver. An empirical model of the TEC noise component was provided to determine the TEC noise value in different types/models of GNSS receivers.</description><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Experiments</subject><subject>Global navigation satellite system</subject><subject>GNSS receiver</subject><subject>Ionosphere</subject><subject>Javad</subject><subject>Leica</subject><subject>Noise</subject><subject>Receivers</subject><subject>Receivers &amp; amplifiers</subject><subject>Septentrio</subject><subject>Signal processing</subject><subject>slant TEC</subject><subject>Standard deviation</subject><subject>Total Electron Content</subject><subject>Tracking</subject><subject>Trimble</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRUNQXf0HAN2k1123yqGu9URRsfY6zyUS2rJuabAX_vasVdV5mmDl8c-AUxRGjp0IYepYy48wIXuqtYo_TCR9Lbvj2v3m3OMx5SYcSghkq94rnKr6uIDU5diQGsphWpILWrVvom9hlcgEZPRmOi9S81i2OyB28gx-RGTYORgQ6T-a46rHrUxPJ9f18Th7RYfOOiVxCDwfFToA24-FP3y-erqaL6mY8e7i-rc5nYydK1o-NdAp4rRx3YjJB4Wpa1lQgV7pULDDJfShl0EF6xAlIrYHzUKvSCaVZMGK_uN1wfYSlXQ1uIX3YCI39XsT0YiH1jWvRahBQaonOeCG19Npox2sTNKWegWMD63jDWqX4tsbc22Vcp26wb7lSVFCqeDmoTjYql2LOCcPvV0btVyD2LxDxCUfKero</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Demyanov, Vladislav</creator><creator>Sergeeva, Maria</creator><creator>Fedorov, Mark</creator><creator>Ishina, Tatiana</creator><creator>Gatica-Acevedo, Victor Jose</creator><creator>Cabral-Cano, Enrique</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2893-9522</orcidid></search><sort><creationdate>20201001</creationdate><title>Comparison of TEC Calculations Based on Trimble, Javad, Leica, and Septentrio GNSS Receiver Data</title><author>Demyanov, Vladislav ; Sergeeva, Maria ; Fedorov, Mark ; Ishina, Tatiana ; Gatica-Acevedo, Victor Jose ; Cabral-Cano, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-94c5a2b5c2c377e3cb06b03e258651f142df64f8f4dee7a488a22fb56c3581f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Experiments</topic><topic>Global navigation satellite system</topic><topic>GNSS receiver</topic><topic>Ionosphere</topic><topic>Javad</topic><topic>Leica</topic><topic>Noise</topic><topic>Receivers</topic><topic>Receivers &amp; amplifiers</topic><topic>Septentrio</topic><topic>Signal processing</topic><topic>slant TEC</topic><topic>Standard deviation</topic><topic>Total Electron Content</topic><topic>Tracking</topic><topic>Trimble</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demyanov, Vladislav</creatorcontrib><creatorcontrib>Sergeeva, Maria</creatorcontrib><creatorcontrib>Fedorov, Mark</creatorcontrib><creatorcontrib>Ishina, Tatiana</creatorcontrib><creatorcontrib>Gatica-Acevedo, Victor Jose</creatorcontrib><creatorcontrib>Cabral-Cano, Enrique</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demyanov, Vladislav</au><au>Sergeeva, Maria</au><au>Fedorov, Mark</au><au>Ishina, Tatiana</au><au>Gatica-Acevedo, Victor Jose</au><au>Cabral-Cano, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of TEC Calculations Based on Trimble, Javad, Leica, and Septentrio GNSS Receiver Data</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>12</volume><issue>19</issue><spage>3268</spage><pages>3268-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>A Global Navigation Satellite System (GNSS) receiver is, to some extent, a “black box” when its data is used for ionospheric studies. Our results based on Javad, Septentrio, Trimble, and Leica GNSS receivers have proven that the accuracy of the slant Total Electron Content (TEC) calculation can differ significantly depending on the GNSS receiver type/model, because TEC measurements depend on the carrier phase tracking technique applied in a receiver. The correlation coefficient between carrier phase noise in L1 and L2 channels is considered as a possible indicator that shows if the L1-aided tracking technique or independent tracking is applied inside a receiver. An empirical model of the TEC noise component was provided to determine the TEC noise value in different types/models of GNSS receivers.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs12193268</doi><orcidid>https://orcid.org/0000-0003-2893-9522</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2020-10, Vol.12 (19), p.3268
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8a3a684ec9d3484d898c2b9f800d1ac1
source Publicly Available Content (ProQuest)
subjects Correlation coefficient
Correlation coefficients
Experiments
Global navigation satellite system
GNSS receiver
Ionosphere
Javad
Leica
Noise
Receivers
Receivers & amplifiers
Septentrio
Signal processing
slant TEC
Standard deviation
Total Electron Content
Tracking
Trimble
title Comparison of TEC Calculations Based on Trimble, Javad, Leica, and Septentrio GNSS Receiver Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20TEC%20Calculations%20Based%20on%20Trimble,%20Javad,%20Leica,%20and%20Septentrio%20GNSS%20Receiver%20Data&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Demyanov,%20Vladislav&rft.date=2020-10-01&rft.volume=12&rft.issue=19&rft.spage=3268&rft.pages=3268-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs12193268&rft_dat=%3Cproquest_doaj_%3E2550300526%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-94c5a2b5c2c377e3cb06b03e258651f142df64f8f4dee7a488a22fb56c3581f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550300526&rft_id=info:pmid/&rfr_iscdi=true