Loading…
Comparison of TEC Calculations Based on Trimble, Javad, Leica, and Septentrio GNSS Receiver Data
A Global Navigation Satellite System (GNSS) receiver is, to some extent, a “black box” when its data is used for ionospheric studies. Our results based on Javad, Septentrio, Trimble, and Leica GNSS receivers have proven that the accuracy of the slant Total Electron Content (TEC) calculation can diff...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2020-10, Vol.12 (19), p.3268 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-94c5a2b5c2c377e3cb06b03e258651f142df64f8f4dee7a488a22fb56c3581f93 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-94c5a2b5c2c377e3cb06b03e258651f142df64f8f4dee7a488a22fb56c3581f93 |
container_end_page | |
container_issue | 19 |
container_start_page | 3268 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 12 |
creator | Demyanov, Vladislav Sergeeva, Maria Fedorov, Mark Ishina, Tatiana Gatica-Acevedo, Victor Jose Cabral-Cano, Enrique |
description | A Global Navigation Satellite System (GNSS) receiver is, to some extent, a “black box” when its data is used for ionospheric studies. Our results based on Javad, Septentrio, Trimble, and Leica GNSS receivers have proven that the accuracy of the slant Total Electron Content (TEC) calculation can differ significantly depending on the GNSS receiver type/model, because TEC measurements depend on the carrier phase tracking technique applied in a receiver. The correlation coefficient between carrier phase noise in L1 and L2 channels is considered as a possible indicator that shows if the L1-aided tracking technique or independent tracking is applied inside a receiver. An empirical model of the TEC noise component was provided to determine the TEC noise value in different types/models of GNSS receivers. |
doi_str_mv | 10.3390/rs12193268 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8a3a684ec9d3484d898c2b9f800d1ac1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8a3a684ec9d3484d898c2b9f800d1ac1</doaj_id><sourcerecordid>2550300526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-94c5a2b5c2c377e3cb06b03e258651f142df64f8f4dee7a488a22fb56c3581f93</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRUNQXf0HAN2k1123yqGu9URRsfY6zyUS2rJuabAX_vasVdV5mmDl8c-AUxRGjp0IYepYy48wIXuqtYo_TCR9Lbvj2v3m3OMx5SYcSghkq94rnKr6uIDU5diQGsphWpILWrVvom9hlcgEZPRmOi9S81i2OyB28gx-RGTYORgQ6T-a46rHrUxPJ9f18Th7RYfOOiVxCDwfFToA24-FP3y-erqaL6mY8e7i-rc5nYydK1o-NdAp4rRx3YjJB4Wpa1lQgV7pULDDJfShl0EF6xAlIrYHzUKvSCaVZMGK_uN1wfYSlXQ1uIX3YCI39XsT0YiH1jWvRahBQaonOeCG19Npox2sTNKWegWMD63jDWqX4tsbc22Vcp26wb7lSVFCqeDmoTjYql2LOCcPvV0btVyD2LxDxCUfKero</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550300526</pqid></control><display><type>article</type><title>Comparison of TEC Calculations Based on Trimble, Javad, Leica, and Septentrio GNSS Receiver Data</title><source>Publicly Available Content (ProQuest)</source><creator>Demyanov, Vladislav ; Sergeeva, Maria ; Fedorov, Mark ; Ishina, Tatiana ; Gatica-Acevedo, Victor Jose ; Cabral-Cano, Enrique</creator><creatorcontrib>Demyanov, Vladislav ; Sergeeva, Maria ; Fedorov, Mark ; Ishina, Tatiana ; Gatica-Acevedo, Victor Jose ; Cabral-Cano, Enrique</creatorcontrib><description>A Global Navigation Satellite System (GNSS) receiver is, to some extent, a “black box” when its data is used for ionospheric studies. Our results based on Javad, Septentrio, Trimble, and Leica GNSS receivers have proven that the accuracy of the slant Total Electron Content (TEC) calculation can differ significantly depending on the GNSS receiver type/model, because TEC measurements depend on the carrier phase tracking technique applied in a receiver. The correlation coefficient between carrier phase noise in L1 and L2 channels is considered as a possible indicator that shows if the L1-aided tracking technique or independent tracking is applied inside a receiver. An empirical model of the TEC noise component was provided to determine the TEC noise value in different types/models of GNSS receivers.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs12193268</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Correlation coefficient ; Correlation coefficients ; Experiments ; Global navigation satellite system ; GNSS receiver ; Ionosphere ; Javad ; Leica ; Noise ; Receivers ; Receivers & amplifiers ; Septentrio ; Signal processing ; slant TEC ; Standard deviation ; Total Electron Content ; Tracking ; Trimble</subject><ispartof>Remote sensing (Basel, Switzerland), 2020-10, Vol.12 (19), p.3268</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-94c5a2b5c2c377e3cb06b03e258651f142df64f8f4dee7a488a22fb56c3581f93</citedby><cites>FETCH-LOGICAL-c361t-94c5a2b5c2c377e3cb06b03e258651f142df64f8f4dee7a488a22fb56c3581f93</cites><orcidid>0000-0003-2893-9522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550300526/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550300526?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Demyanov, Vladislav</creatorcontrib><creatorcontrib>Sergeeva, Maria</creatorcontrib><creatorcontrib>Fedorov, Mark</creatorcontrib><creatorcontrib>Ishina, Tatiana</creatorcontrib><creatorcontrib>Gatica-Acevedo, Victor Jose</creatorcontrib><creatorcontrib>Cabral-Cano, Enrique</creatorcontrib><title>Comparison of TEC Calculations Based on Trimble, Javad, Leica, and Septentrio GNSS Receiver Data</title><title>Remote sensing (Basel, Switzerland)</title><description>A Global Navigation Satellite System (GNSS) receiver is, to some extent, a “black box” when its data is used for ionospheric studies. Our results based on Javad, Septentrio, Trimble, and Leica GNSS receivers have proven that the accuracy of the slant Total Electron Content (TEC) calculation can differ significantly depending on the GNSS receiver type/model, because TEC measurements depend on the carrier phase tracking technique applied in a receiver. The correlation coefficient between carrier phase noise in L1 and L2 channels is considered as a possible indicator that shows if the L1-aided tracking technique or independent tracking is applied inside a receiver. An empirical model of the TEC noise component was provided to determine the TEC noise value in different types/models of GNSS receivers.</description><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Experiments</subject><subject>Global navigation satellite system</subject><subject>GNSS receiver</subject><subject>Ionosphere</subject><subject>Javad</subject><subject>Leica</subject><subject>Noise</subject><subject>Receivers</subject><subject>Receivers & amplifiers</subject><subject>Septentrio</subject><subject>Signal processing</subject><subject>slant TEC</subject><subject>Standard deviation</subject><subject>Total Electron Content</subject><subject>Tracking</subject><subject>Trimble</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRUNQXf0HAN2k1123yqGu9URRsfY6zyUS2rJuabAX_vasVdV5mmDl8c-AUxRGjp0IYepYy48wIXuqtYo_TCR9Lbvj2v3m3OMx5SYcSghkq94rnKr6uIDU5diQGsphWpILWrVvom9hlcgEZPRmOi9S81i2OyB28gx-RGTYORgQ6T-a46rHrUxPJ9f18Th7RYfOOiVxCDwfFToA24-FP3y-erqaL6mY8e7i-rc5nYydK1o-NdAp4rRx3YjJB4Wpa1lQgV7pULDDJfShl0EF6xAlIrYHzUKvSCaVZMGK_uN1wfYSlXQ1uIX3YCI39XsT0YiH1jWvRahBQaonOeCG19Npox2sTNKWegWMD63jDWqX4tsbc22Vcp26wb7lSVFCqeDmoTjYql2LOCcPvV0btVyD2LxDxCUfKero</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Demyanov, Vladislav</creator><creator>Sergeeva, Maria</creator><creator>Fedorov, Mark</creator><creator>Ishina, Tatiana</creator><creator>Gatica-Acevedo, Victor Jose</creator><creator>Cabral-Cano, Enrique</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2893-9522</orcidid></search><sort><creationdate>20201001</creationdate><title>Comparison of TEC Calculations Based on Trimble, Javad, Leica, and Septentrio GNSS Receiver Data</title><author>Demyanov, Vladislav ; Sergeeva, Maria ; Fedorov, Mark ; Ishina, Tatiana ; Gatica-Acevedo, Victor Jose ; Cabral-Cano, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-94c5a2b5c2c377e3cb06b03e258651f142df64f8f4dee7a488a22fb56c3581f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Experiments</topic><topic>Global navigation satellite system</topic><topic>GNSS receiver</topic><topic>Ionosphere</topic><topic>Javad</topic><topic>Leica</topic><topic>Noise</topic><topic>Receivers</topic><topic>Receivers & amplifiers</topic><topic>Septentrio</topic><topic>Signal processing</topic><topic>slant TEC</topic><topic>Standard deviation</topic><topic>Total Electron Content</topic><topic>Tracking</topic><topic>Trimble</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demyanov, Vladislav</creatorcontrib><creatorcontrib>Sergeeva, Maria</creatorcontrib><creatorcontrib>Fedorov, Mark</creatorcontrib><creatorcontrib>Ishina, Tatiana</creatorcontrib><creatorcontrib>Gatica-Acevedo, Victor Jose</creatorcontrib><creatorcontrib>Cabral-Cano, Enrique</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demyanov, Vladislav</au><au>Sergeeva, Maria</au><au>Fedorov, Mark</au><au>Ishina, Tatiana</au><au>Gatica-Acevedo, Victor Jose</au><au>Cabral-Cano, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of TEC Calculations Based on Trimble, Javad, Leica, and Septentrio GNSS Receiver Data</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>12</volume><issue>19</issue><spage>3268</spage><pages>3268-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>A Global Navigation Satellite System (GNSS) receiver is, to some extent, a “black box” when its data is used for ionospheric studies. Our results based on Javad, Septentrio, Trimble, and Leica GNSS receivers have proven that the accuracy of the slant Total Electron Content (TEC) calculation can differ significantly depending on the GNSS receiver type/model, because TEC measurements depend on the carrier phase tracking technique applied in a receiver. The correlation coefficient between carrier phase noise in L1 and L2 channels is considered as a possible indicator that shows if the L1-aided tracking technique or independent tracking is applied inside a receiver. An empirical model of the TEC noise component was provided to determine the TEC noise value in different types/models of GNSS receivers.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs12193268</doi><orcidid>https://orcid.org/0000-0003-2893-9522</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2020-10, Vol.12 (19), p.3268 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8a3a684ec9d3484d898c2b9f800d1ac1 |
source | Publicly Available Content (ProQuest) |
subjects | Correlation coefficient Correlation coefficients Experiments Global navigation satellite system GNSS receiver Ionosphere Javad Leica Noise Receivers Receivers & amplifiers Septentrio Signal processing slant TEC Standard deviation Total Electron Content Tracking Trimble |
title | Comparison of TEC Calculations Based on Trimble, Javad, Leica, and Septentrio GNSS Receiver Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20TEC%20Calculations%20Based%20on%20Trimble,%20Javad,%20Leica,%20and%20Septentrio%20GNSS%20Receiver%20Data&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Demyanov,%20Vladislav&rft.date=2020-10-01&rft.volume=12&rft.issue=19&rft.spage=3268&rft.pages=3268-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs12193268&rft_dat=%3Cproquest_doaj_%3E2550300526%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-94c5a2b5c2c377e3cb06b03e258651f142df64f8f4dee7a488a22fb56c3581f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550300526&rft_id=info:pmid/&rfr_iscdi=true |