Loading…

A Tandem Axial-Piston Unit Based Strategy for the Reduction of Noise Sources in Hydraulic Systems

This article presents a novel passive fluid borne noise source reduction strategy, based on tandem axial-piston unit indexing with the usage of symmetric lines. The strategy consists of setting the phase between the two synchronous units to accomplish destructive interference in targeted unit harmon...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-10, Vol.13 (20), p.5377
Main Authors: Danes, Leandro, Vacca, Andrea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents a novel passive fluid borne noise source reduction strategy, based on tandem axial-piston unit indexing with the usage of symmetric lines. The strategy consists of setting the phase between the two synchronous units to accomplish destructive interference in targeted unit harmonics. A strategy capable of achieving destructive interference in all odd harmonics is investigated first analytically and then confirmed by a simulation study. Experiments on the proposed strategy confirmed its effectiveness at the first and third pump fundamental harmonics, and pressure ripple reduction was accomplished. The fluid borne noise source reduction in the first and third harmonic is verified to be propagated to pipe vibration and sound power. Regarding the first harmonic, pressure ripple was reduced by up to 18 dB; while for third harmonic, pressure ripple was reduced by up to 11 dB. In the experiment, however, noise cancellation is not achieved for the higher odd harmonics, as is instead found in the simulation. Conversely, transfer functions form pressure ripple to pipe wall acceleration are obtained experimentally, and a critical vibration band from 2000 Hz to 3000 Hz is identified as being crucial for effective overall sound power reduction.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13205377