Loading…

The Implementation and Evaluation of Individual Preference in Robot Facial Expression Based on Emotion Estimation Using Biological Signals

Recently, robot services have been widely applied in many fields. To provide optimum service, it is essential to maintain good acceptance of the robot for more effective interaction with users. Previously, we attempted to implement facial expressions by synchronizing an estimated human emotion on th...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-09, Vol.21 (18), p.6322
Main Authors: Sripian, Peeraya, Anuardi, Muhammad Nur Adilin Mohd, Yu, Jiawei, Sugaya, Midori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, robot services have been widely applied in many fields. To provide optimum service, it is essential to maintain good acceptance of the robot for more effective interaction with users. Previously, we attempted to implement facial expressions by synchronizing an estimated human emotion on the face of a robot. The results revealed that the robot could present different perceptions according to individual preferences. In this study, we considered individual differences to improve the acceptance of the robot by changing the robot’s expression according to the emotion of its interacting partner. The emotion was estimated using biological signals, and the robot changed its expression according to three conditions: synchronized with the estimated emotion, inversely synchronized, and a funny expression. During the experiment, the participants provided feedback regarding the robot’s expression by choosing whether they “like” or “dislike” the expression. We investigated individual differences in the acceptance of the robot expression using the Semantic Differential scale method. In addition, logistic regression was used to create a classification model by considering individual differences based on the biological data and feedback from each participant. We found that the robot expression based on inverse synchronization when the participants felt a negative emotion could result in impression differences among individuals. Then, the robot’s expression was determined based on the classification model, and the Semantic Differential scale on the impression of the robot was compared with the three conditions. Overall, we found that the participants were most accepting when the robot expression was calculated using the proposed personalized method.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21186322