Loading…
SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation
Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK...
Saved in:
Published in: | Nature communications 2022-11, Vol.13 (1), p.7153-7153, Article 7153 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-9be27cc5aa87783aad30524d06177509f37629d8602471631804222fa09f32843 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-9be27cc5aa87783aad30524d06177509f37629d8602471631804222fa09f32843 |
container_end_page | 7153 |
container_issue | 1 |
container_start_page | 7153 |
container_title | Nature communications |
container_volume | 13 |
creator | Yan, Lingjie Zhang, Tao Wang, Kai Chen, Zezhao Yang, Yuanxin Shan, Bing Sun, Qi Zhang, Mengmeng Zhang, Yichi Zhong, Yedan Liu, Nan Gu, Jinyang Xu, Daichao |
description | Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK1. SENP1 is progressively reduced in proportion to NASH severity in patients. Hepatocyte-specific SENP1-knockout mice develop spontaneous NASH-related phenotypes in a RIPK1 kinase-dependent manner. We demonstrate that SENP1 deficiency sensitizes cells to RIPK1 kinase-dependent apoptosis by promoting RIPK1 activation following TNFα stimulation. Mechanistically, SENP1 deSUMOylates RIPK1 in TNF-R1 signaling complex (TNF-RSC), keeping RIPK1 in check. Loss of SENP1 leads to SUMOylation of RIPK1, which re-orchestrates TNF-RSC and modulates the ubiquitination patterns and activity of RIPK1. Notably, genetic inhibition of RIPK1 effectively reverses disease progression in hepatocyte-specific SENP1-knockout male mice with high-fat-diet-induced nonalcoholic fatty liver. We propose that deSUMOylation of RIPK1 by SENP1 provides a pathophysiologically relevant cell death-restricting checkpoint that modulates RIPK1 activation in the pathogenesis of nonalcoholic steatohepatitis.
The receptor-interacting protein (RIPK1) promotes cell death and contributes to nonalcoholic steatohepatitis pathogenesis. Here the authors report that a SUMO-specific protease, SENP1, deSUMOylates RIPK1 and inhibits cell death in a mouse model of non-alcoholic fatty liver disease. |
doi_str_mv | 10.1038/s41467-022-34993-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8a650a956901429b89dabaa947cacf14</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8a650a956901429b89dabaa947cacf14</doaj_id><sourcerecordid>2738696615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-9be27cc5aa87783aad30524d06177509f37629d8602471631804222fa09f32843</originalsourceid><addsrcrecordid>eNp9kktv1DAUhS0EolXpH2CBIrFhE_ArfmyQUFVgRAUV0LV14zhTjxI72Eml_ns8k1JaFnhjy-e7x_b1QeglwW8JZupd5oQLWWNKa8a1ZjV-go4p5qQmkrKnD9ZH6DTnHS6DaaI4f46OmDhUk2N09eP86yWppuRuXJhzlWcHc7x2E8x-9rlqb6u8TEXO2Ydt9X1z-YXUXfKFrmCK0xxzoSB0lQ_9AONY6mJ4gZ71MGR3ejefoKuP5z_PPtcX3z5tzj5c1LbheK5166i0tgFQUioG0DHcUN5hQaRssO6ZFFR3SmDKJRGMKMwppT3sJao4O0Gb1beLsDNT8iOkWxPBm8NGTFsDafZ2cEaBaDDoRmhMONWt0h20AJpLC7Yne6_3q9e0tKPrbGlHguGR6WMl-GuzjTdGC0WUksXgzZ1Bir8Wl2cz-mzdMEBwccmGSqY5Y5ywgr7-B93FJYXSqj2lhBaCNIWiK2VTzDm5_v4yBJt9CMwaAlNCYA4hMLgUvXr4jPuSP19eALYCuUhh69Lfs_9j-xujCbtb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738696615</pqid></control><display><type>article</type><title>SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yan, Lingjie ; Zhang, Tao ; Wang, Kai ; Chen, Zezhao ; Yang, Yuanxin ; Shan, Bing ; Sun, Qi ; Zhang, Mengmeng ; Zhang, Yichi ; Zhong, Yedan ; Liu, Nan ; Gu, Jinyang ; Xu, Daichao</creator><creatorcontrib>Yan, Lingjie ; Zhang, Tao ; Wang, Kai ; Chen, Zezhao ; Yang, Yuanxin ; Shan, Bing ; Sun, Qi ; Zhang, Mengmeng ; Zhang, Yichi ; Zhong, Yedan ; Liu, Nan ; Gu, Jinyang ; Xu, Daichao</creatorcontrib><description>Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK1. SENP1 is progressively reduced in proportion to NASH severity in patients. Hepatocyte-specific SENP1-knockout mice develop spontaneous NASH-related phenotypes in a RIPK1 kinase-dependent manner. We demonstrate that SENP1 deficiency sensitizes cells to RIPK1 kinase-dependent apoptosis by promoting RIPK1 activation following TNFα stimulation. Mechanistically, SENP1 deSUMOylates RIPK1 in TNF-R1 signaling complex (TNF-RSC), keeping RIPK1 in check. Loss of SENP1 leads to SUMOylation of RIPK1, which re-orchestrates TNF-RSC and modulates the ubiquitination patterns and activity of RIPK1. Notably, genetic inhibition of RIPK1 effectively reverses disease progression in hepatocyte-specific SENP1-knockout male mice with high-fat-diet-induced nonalcoholic fatty liver. We propose that deSUMOylation of RIPK1 by SENP1 provides a pathophysiologically relevant cell death-restricting checkpoint that modulates RIPK1 activation in the pathogenesis of nonalcoholic steatohepatitis.
The receptor-interacting protein (RIPK1) promotes cell death and contributes to nonalcoholic steatohepatitis pathogenesis. Here the authors report that a SUMO-specific protease, SENP1, deSUMOylates RIPK1 and inhibits cell death in a mouse model of non-alcoholic fatty liver disease.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-34993-0</identifier><identifier>PMID: 36414671</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 13/109 ; 13/2 ; 13/21 ; 13/51 ; 13/89 ; 13/95 ; 14/19 ; 38/39 ; 38/77 ; 38/90 ; 45/91 ; 631/80/458/538 ; 631/80/82/23 ; 64/110 ; 64/60 ; 692/699/317 ; 82/58 ; 82/83 ; 96/63 ; Animals ; Apoptosis ; Cell activation ; Cell death ; Cysteine Endopeptidases - genetics ; Cysteine Endopeptidases - metabolism ; Fatty liver ; Hepatocytes - metabolism ; High fat diet ; Humanities and Social Sciences ; Inflammation ; Inflammation - pathology ; Kinases ; Liver ; Liver diseases ; Male ; Mice ; Mice, Knockout ; Mortality ; multidisciplinary ; Non-alcoholic Fatty Liver Disease - metabolism ; Pathogenesis ; Phenotypes ; Phosphotransferases - metabolism ; Protease ; Proteinase ; Receptor-Interacting Protein Serine-Threonine Kinases - metabolism ; Science ; Science (multidisciplinary) ; SUMO protein ; Tumor necrosis factor-α ; Ubiquitination</subject><ispartof>Nature communications, 2022-11, Vol.13 (1), p.7153-7153, Article 7153</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-9be27cc5aa87783aad30524d06177509f37629d8602471631804222fa09f32843</citedby><cites>FETCH-LOGICAL-c540t-9be27cc5aa87783aad30524d06177509f37629d8602471631804222fa09f32843</cites><orcidid>0000-0003-4152-8752 ; 0000-0002-3286-4968 ; 0000-0003-2727-2420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2738696615/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2738696615?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36414671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Lingjie</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Chen, Zezhao</creatorcontrib><creatorcontrib>Yang, Yuanxin</creatorcontrib><creatorcontrib>Shan, Bing</creatorcontrib><creatorcontrib>Sun, Qi</creatorcontrib><creatorcontrib>Zhang, Mengmeng</creatorcontrib><creatorcontrib>Zhang, Yichi</creatorcontrib><creatorcontrib>Zhong, Yedan</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><creatorcontrib>Gu, Jinyang</creatorcontrib><creatorcontrib>Xu, Daichao</creatorcontrib><title>SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK1. SENP1 is progressively reduced in proportion to NASH severity in patients. Hepatocyte-specific SENP1-knockout mice develop spontaneous NASH-related phenotypes in a RIPK1 kinase-dependent manner. We demonstrate that SENP1 deficiency sensitizes cells to RIPK1 kinase-dependent apoptosis by promoting RIPK1 activation following TNFα stimulation. Mechanistically, SENP1 deSUMOylates RIPK1 in TNF-R1 signaling complex (TNF-RSC), keeping RIPK1 in check. Loss of SENP1 leads to SUMOylation of RIPK1, which re-orchestrates TNF-RSC and modulates the ubiquitination patterns and activity of RIPK1. Notably, genetic inhibition of RIPK1 effectively reverses disease progression in hepatocyte-specific SENP1-knockout male mice with high-fat-diet-induced nonalcoholic fatty liver. We propose that deSUMOylation of RIPK1 by SENP1 provides a pathophysiologically relevant cell death-restricting checkpoint that modulates RIPK1 activation in the pathogenesis of nonalcoholic steatohepatitis.
The receptor-interacting protein (RIPK1) promotes cell death and contributes to nonalcoholic steatohepatitis pathogenesis. Here the authors report that a SUMO-specific protease, SENP1, deSUMOylates RIPK1 and inhibits cell death in a mouse model of non-alcoholic fatty liver disease.</description><subject>13/1</subject><subject>13/106</subject><subject>13/109</subject><subject>13/2</subject><subject>13/21</subject><subject>13/51</subject><subject>13/89</subject><subject>13/95</subject><subject>14/19</subject><subject>38/39</subject><subject>38/77</subject><subject>38/90</subject><subject>45/91</subject><subject>631/80/458/538</subject><subject>631/80/82/23</subject><subject>64/110</subject><subject>64/60</subject><subject>692/699/317</subject><subject>82/58</subject><subject>82/83</subject><subject>96/63</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Cell activation</subject><subject>Cell death</subject><subject>Cysteine Endopeptidases - genetics</subject><subject>Cysteine Endopeptidases - metabolism</subject><subject>Fatty liver</subject><subject>Hepatocytes - metabolism</subject><subject>High fat diet</subject><subject>Humanities and Social Sciences</subject><subject>Inflammation</subject><subject>Inflammation - pathology</subject><subject>Kinases</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mortality</subject><subject>multidisciplinary</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Pathogenesis</subject><subject>Phenotypes</subject><subject>Phosphotransferases - metabolism</subject><subject>Protease</subject><subject>Proteinase</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>SUMO protein</subject><subject>Tumor necrosis factor-α</subject><subject>Ubiquitination</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhS0EolXpH2CBIrFhE_ArfmyQUFVgRAUV0LV14zhTjxI72Eml_ns8k1JaFnhjy-e7x_b1QeglwW8JZupd5oQLWWNKa8a1ZjV-go4p5qQmkrKnD9ZH6DTnHS6DaaI4f46OmDhUk2N09eP86yWppuRuXJhzlWcHc7x2E8x-9rlqb6u8TEXO2Ydt9X1z-YXUXfKFrmCK0xxzoSB0lQ_9AONY6mJ4gZ71MGR3ejefoKuP5z_PPtcX3z5tzj5c1LbheK5166i0tgFQUioG0DHcUN5hQaRssO6ZFFR3SmDKJRGMKMwppT3sJao4O0Gb1beLsDNT8iOkWxPBm8NGTFsDafZ2cEaBaDDoRmhMONWt0h20AJpLC7Yne6_3q9e0tKPrbGlHguGR6WMl-GuzjTdGC0WUksXgzZ1Bir8Wl2cz-mzdMEBwccmGSqY5Y5ywgr7-B93FJYXSqj2lhBaCNIWiK2VTzDm5_v4yBJt9CMwaAlNCYA4hMLgUvXr4jPuSP19eALYCuUhh69Lfs_9j-xujCbtb</recordid><startdate>20221122</startdate><enddate>20221122</enddate><creator>Yan, Lingjie</creator><creator>Zhang, Tao</creator><creator>Wang, Kai</creator><creator>Chen, Zezhao</creator><creator>Yang, Yuanxin</creator><creator>Shan, Bing</creator><creator>Sun, Qi</creator><creator>Zhang, Mengmeng</creator><creator>Zhang, Yichi</creator><creator>Zhong, Yedan</creator><creator>Liu, Nan</creator><creator>Gu, Jinyang</creator><creator>Xu, Daichao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4152-8752</orcidid><orcidid>https://orcid.org/0000-0002-3286-4968</orcidid><orcidid>https://orcid.org/0000-0003-2727-2420</orcidid></search><sort><creationdate>20221122</creationdate><title>SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation</title><author>Yan, Lingjie ; Zhang, Tao ; Wang, Kai ; Chen, Zezhao ; Yang, Yuanxin ; Shan, Bing ; Sun, Qi ; Zhang, Mengmeng ; Zhang, Yichi ; Zhong, Yedan ; Liu, Nan ; Gu, Jinyang ; Xu, Daichao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-9be27cc5aa87783aad30524d06177509f37629d8602471631804222fa09f32843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/109</topic><topic>13/2</topic><topic>13/21</topic><topic>13/51</topic><topic>13/89</topic><topic>13/95</topic><topic>14/19</topic><topic>38/39</topic><topic>38/77</topic><topic>38/90</topic><topic>45/91</topic><topic>631/80/458/538</topic><topic>631/80/82/23</topic><topic>64/110</topic><topic>64/60</topic><topic>692/699/317</topic><topic>82/58</topic><topic>82/83</topic><topic>96/63</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Cell activation</topic><topic>Cell death</topic><topic>Cysteine Endopeptidases - genetics</topic><topic>Cysteine Endopeptidases - metabolism</topic><topic>Fatty liver</topic><topic>Hepatocytes - metabolism</topic><topic>High fat diet</topic><topic>Humanities and Social Sciences</topic><topic>Inflammation</topic><topic>Inflammation - pathology</topic><topic>Kinases</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mortality</topic><topic>multidisciplinary</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Pathogenesis</topic><topic>Phenotypes</topic><topic>Phosphotransferases - metabolism</topic><topic>Protease</topic><topic>Proteinase</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>SUMO protein</topic><topic>Tumor necrosis factor-α</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Lingjie</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Chen, Zezhao</creatorcontrib><creatorcontrib>Yang, Yuanxin</creatorcontrib><creatorcontrib>Shan, Bing</creatorcontrib><creatorcontrib>Sun, Qi</creatorcontrib><creatorcontrib>Zhang, Mengmeng</creatorcontrib><creatorcontrib>Zhang, Yichi</creatorcontrib><creatorcontrib>Zhong, Yedan</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><creatorcontrib>Gu, Jinyang</creatorcontrib><creatorcontrib>Xu, Daichao</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Lingjie</au><au>Zhang, Tao</au><au>Wang, Kai</au><au>Chen, Zezhao</au><au>Yang, Yuanxin</au><au>Shan, Bing</au><au>Sun, Qi</au><au>Zhang, Mengmeng</au><au>Zhang, Yichi</au><au>Zhong, Yedan</au><au>Liu, Nan</au><au>Gu, Jinyang</au><au>Xu, Daichao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-11-22</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>7153</spage><epage>7153</epage><pages>7153-7153</pages><artnum>7153</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK1. SENP1 is progressively reduced in proportion to NASH severity in patients. Hepatocyte-specific SENP1-knockout mice develop spontaneous NASH-related phenotypes in a RIPK1 kinase-dependent manner. We demonstrate that SENP1 deficiency sensitizes cells to RIPK1 kinase-dependent apoptosis by promoting RIPK1 activation following TNFα stimulation. Mechanistically, SENP1 deSUMOylates RIPK1 in TNF-R1 signaling complex (TNF-RSC), keeping RIPK1 in check. Loss of SENP1 leads to SUMOylation of RIPK1, which re-orchestrates TNF-RSC and modulates the ubiquitination patterns and activity of RIPK1. Notably, genetic inhibition of RIPK1 effectively reverses disease progression in hepatocyte-specific SENP1-knockout male mice with high-fat-diet-induced nonalcoholic fatty liver. We propose that deSUMOylation of RIPK1 by SENP1 provides a pathophysiologically relevant cell death-restricting checkpoint that modulates RIPK1 activation in the pathogenesis of nonalcoholic steatohepatitis.
The receptor-interacting protein (RIPK1) promotes cell death and contributes to nonalcoholic steatohepatitis pathogenesis. Here the authors report that a SUMO-specific protease, SENP1, deSUMOylates RIPK1 and inhibits cell death in a mouse model of non-alcoholic fatty liver disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36414671</pmid><doi>10.1038/s41467-022-34993-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4152-8752</orcidid><orcidid>https://orcid.org/0000-0002-3286-4968</orcidid><orcidid>https://orcid.org/0000-0003-2727-2420</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-11, Vol.13 (1), p.7153-7153, Article 7153 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8a650a956901429b89dabaa947cacf14 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 13/106 13/109 13/2 13/21 13/51 13/89 13/95 14/19 38/39 38/77 38/90 45/91 631/80/458/538 631/80/82/23 64/110 64/60 692/699/317 82/58 82/83 96/63 Animals Apoptosis Cell activation Cell death Cysteine Endopeptidases - genetics Cysteine Endopeptidases - metabolism Fatty liver Hepatocytes - metabolism High fat diet Humanities and Social Sciences Inflammation Inflammation - pathology Kinases Liver Liver diseases Male Mice Mice, Knockout Mortality multidisciplinary Non-alcoholic Fatty Liver Disease - metabolism Pathogenesis Phenotypes Phosphotransferases - metabolism Protease Proteinase Receptor-Interacting Protein Serine-Threonine Kinases - metabolism Science Science (multidisciplinary) SUMO protein Tumor necrosis factor-α Ubiquitination |
title | SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SENP1%20prevents%20steatohepatitis%20by%20suppressing%20RIPK1-driven%20apoptosis%20and%20inflammation&rft.jtitle=Nature%20communications&rft.au=Yan,%20Lingjie&rft.date=2022-11-22&rft.volume=13&rft.issue=1&rft.spage=7153&rft.epage=7153&rft.pages=7153-7153&rft.artnum=7153&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-34993-0&rft_dat=%3Cproquest_doaj_%3E2738696615%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-9be27cc5aa87783aad30524d06177509f37629d8602471631804222fa09f32843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2738696615&rft_id=info:pmid/36414671&rfr_iscdi=true |