Loading…

SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation

Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-11, Vol.13 (1), p.7153-7153, Article 7153
Main Authors: Yan, Lingjie, Zhang, Tao, Wang, Kai, Chen, Zezhao, Yang, Yuanxin, Shan, Bing, Sun, Qi, Zhang, Mengmeng, Zhang, Yichi, Zhong, Yedan, Liu, Nan, Gu, Jinyang, Xu, Daichao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-9be27cc5aa87783aad30524d06177509f37629d8602471631804222fa09f32843
cites cdi_FETCH-LOGICAL-c540t-9be27cc5aa87783aad30524d06177509f37629d8602471631804222fa09f32843
container_end_page 7153
container_issue 1
container_start_page 7153
container_title Nature communications
container_volume 13
creator Yan, Lingjie
Zhang, Tao
Wang, Kai
Chen, Zezhao
Yang, Yuanxin
Shan, Bing
Sun, Qi
Zhang, Mengmeng
Zhang, Yichi
Zhong, Yedan
Liu, Nan
Gu, Jinyang
Xu, Daichao
description Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK1. SENP1 is progressively reduced in proportion to NASH severity in patients. Hepatocyte-specific SENP1-knockout mice develop spontaneous NASH-related phenotypes in a RIPK1 kinase-dependent manner. We demonstrate that SENP1 deficiency sensitizes cells to RIPK1 kinase-dependent apoptosis by promoting RIPK1 activation following TNFα stimulation. Mechanistically, SENP1 deSUMOylates RIPK1 in TNF-R1 signaling complex (TNF-RSC), keeping RIPK1 in check. Loss of SENP1 leads to SUMOylation of RIPK1, which re-orchestrates TNF-RSC and modulates the ubiquitination patterns and activity of RIPK1. Notably, genetic inhibition of RIPK1 effectively reverses disease progression in hepatocyte-specific SENP1-knockout male mice with high-fat-diet-induced nonalcoholic fatty liver. We propose that deSUMOylation of RIPK1 by SENP1 provides a pathophysiologically relevant cell death-restricting checkpoint that modulates RIPK1 activation in the pathogenesis of nonalcoholic steatohepatitis. The receptor-interacting protein (RIPK1) promotes cell death and contributes to nonalcoholic steatohepatitis pathogenesis. Here the authors report that a SUMO-specific protease, SENP1, deSUMOylates RIPK1 and inhibits cell death in a mouse model of non-alcoholic fatty liver disease.
doi_str_mv 10.1038/s41467-022-34993-0
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8a650a956901429b89dabaa947cacf14</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8a650a956901429b89dabaa947cacf14</doaj_id><sourcerecordid>2738696615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-9be27cc5aa87783aad30524d06177509f37629d8602471631804222fa09f32843</originalsourceid><addsrcrecordid>eNp9kktv1DAUhS0EolXpH2CBIrFhE_ArfmyQUFVgRAUV0LV14zhTjxI72Eml_ns8k1JaFnhjy-e7x_b1QeglwW8JZupd5oQLWWNKa8a1ZjV-go4p5qQmkrKnD9ZH6DTnHS6DaaI4f46OmDhUk2N09eP86yWppuRuXJhzlWcHc7x2E8x-9rlqb6u8TEXO2Ydt9X1z-YXUXfKFrmCK0xxzoSB0lQ_9AONY6mJ4gZ71MGR3ejefoKuP5z_PPtcX3z5tzj5c1LbheK5166i0tgFQUioG0DHcUN5hQaRssO6ZFFR3SmDKJRGMKMwppT3sJao4O0Gb1beLsDNT8iOkWxPBm8NGTFsDafZ2cEaBaDDoRmhMONWt0h20AJpLC7Yne6_3q9e0tKPrbGlHguGR6WMl-GuzjTdGC0WUksXgzZ1Bir8Wl2cz-mzdMEBwccmGSqY5Y5ywgr7-B93FJYXSqj2lhBaCNIWiK2VTzDm5_v4yBJt9CMwaAlNCYA4hMLgUvXr4jPuSP19eALYCuUhh69Lfs_9j-xujCbtb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738696615</pqid></control><display><type>article</type><title>SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yan, Lingjie ; Zhang, Tao ; Wang, Kai ; Chen, Zezhao ; Yang, Yuanxin ; Shan, Bing ; Sun, Qi ; Zhang, Mengmeng ; Zhang, Yichi ; Zhong, Yedan ; Liu, Nan ; Gu, Jinyang ; Xu, Daichao</creator><creatorcontrib>Yan, Lingjie ; Zhang, Tao ; Wang, Kai ; Chen, Zezhao ; Yang, Yuanxin ; Shan, Bing ; Sun, Qi ; Zhang, Mengmeng ; Zhang, Yichi ; Zhong, Yedan ; Liu, Nan ; Gu, Jinyang ; Xu, Daichao</creatorcontrib><description>Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK1. SENP1 is progressively reduced in proportion to NASH severity in patients. Hepatocyte-specific SENP1-knockout mice develop spontaneous NASH-related phenotypes in a RIPK1 kinase-dependent manner. We demonstrate that SENP1 deficiency sensitizes cells to RIPK1 kinase-dependent apoptosis by promoting RIPK1 activation following TNFα stimulation. Mechanistically, SENP1 deSUMOylates RIPK1 in TNF-R1 signaling complex (TNF-RSC), keeping RIPK1 in check. Loss of SENP1 leads to SUMOylation of RIPK1, which re-orchestrates TNF-RSC and modulates the ubiquitination patterns and activity of RIPK1. Notably, genetic inhibition of RIPK1 effectively reverses disease progression in hepatocyte-specific SENP1-knockout male mice with high-fat-diet-induced nonalcoholic fatty liver. We propose that deSUMOylation of RIPK1 by SENP1 provides a pathophysiologically relevant cell death-restricting checkpoint that modulates RIPK1 activation in the pathogenesis of nonalcoholic steatohepatitis. The receptor-interacting protein (RIPK1) promotes cell death and contributes to nonalcoholic steatohepatitis pathogenesis. Here the authors report that a SUMO-specific protease, SENP1, deSUMOylates RIPK1 and inhibits cell death in a mouse model of non-alcoholic fatty liver disease.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-34993-0</identifier><identifier>PMID: 36414671</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 13/109 ; 13/2 ; 13/21 ; 13/51 ; 13/89 ; 13/95 ; 14/19 ; 38/39 ; 38/77 ; 38/90 ; 45/91 ; 631/80/458/538 ; 631/80/82/23 ; 64/110 ; 64/60 ; 692/699/317 ; 82/58 ; 82/83 ; 96/63 ; Animals ; Apoptosis ; Cell activation ; Cell death ; Cysteine Endopeptidases - genetics ; Cysteine Endopeptidases - metabolism ; Fatty liver ; Hepatocytes - metabolism ; High fat diet ; Humanities and Social Sciences ; Inflammation ; Inflammation - pathology ; Kinases ; Liver ; Liver diseases ; Male ; Mice ; Mice, Knockout ; Mortality ; multidisciplinary ; Non-alcoholic Fatty Liver Disease - metabolism ; Pathogenesis ; Phenotypes ; Phosphotransferases - metabolism ; Protease ; Proteinase ; Receptor-Interacting Protein Serine-Threonine Kinases - metabolism ; Science ; Science (multidisciplinary) ; SUMO protein ; Tumor necrosis factor-α ; Ubiquitination</subject><ispartof>Nature communications, 2022-11, Vol.13 (1), p.7153-7153, Article 7153</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-9be27cc5aa87783aad30524d06177509f37629d8602471631804222fa09f32843</citedby><cites>FETCH-LOGICAL-c540t-9be27cc5aa87783aad30524d06177509f37629d8602471631804222fa09f32843</cites><orcidid>0000-0003-4152-8752 ; 0000-0002-3286-4968 ; 0000-0003-2727-2420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2738696615/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2738696615?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36414671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Lingjie</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Chen, Zezhao</creatorcontrib><creatorcontrib>Yang, Yuanxin</creatorcontrib><creatorcontrib>Shan, Bing</creatorcontrib><creatorcontrib>Sun, Qi</creatorcontrib><creatorcontrib>Zhang, Mengmeng</creatorcontrib><creatorcontrib>Zhang, Yichi</creatorcontrib><creatorcontrib>Zhong, Yedan</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><creatorcontrib>Gu, Jinyang</creatorcontrib><creatorcontrib>Xu, Daichao</creatorcontrib><title>SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK1. SENP1 is progressively reduced in proportion to NASH severity in patients. Hepatocyte-specific SENP1-knockout mice develop spontaneous NASH-related phenotypes in a RIPK1 kinase-dependent manner. We demonstrate that SENP1 deficiency sensitizes cells to RIPK1 kinase-dependent apoptosis by promoting RIPK1 activation following TNFα stimulation. Mechanistically, SENP1 deSUMOylates RIPK1 in TNF-R1 signaling complex (TNF-RSC), keeping RIPK1 in check. Loss of SENP1 leads to SUMOylation of RIPK1, which re-orchestrates TNF-RSC and modulates the ubiquitination patterns and activity of RIPK1. Notably, genetic inhibition of RIPK1 effectively reverses disease progression in hepatocyte-specific SENP1-knockout male mice with high-fat-diet-induced nonalcoholic fatty liver. We propose that deSUMOylation of RIPK1 by SENP1 provides a pathophysiologically relevant cell death-restricting checkpoint that modulates RIPK1 activation in the pathogenesis of nonalcoholic steatohepatitis. The receptor-interacting protein (RIPK1) promotes cell death and contributes to nonalcoholic steatohepatitis pathogenesis. Here the authors report that a SUMO-specific protease, SENP1, deSUMOylates RIPK1 and inhibits cell death in a mouse model of non-alcoholic fatty liver disease.</description><subject>13/1</subject><subject>13/106</subject><subject>13/109</subject><subject>13/2</subject><subject>13/21</subject><subject>13/51</subject><subject>13/89</subject><subject>13/95</subject><subject>14/19</subject><subject>38/39</subject><subject>38/77</subject><subject>38/90</subject><subject>45/91</subject><subject>631/80/458/538</subject><subject>631/80/82/23</subject><subject>64/110</subject><subject>64/60</subject><subject>692/699/317</subject><subject>82/58</subject><subject>82/83</subject><subject>96/63</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Cell activation</subject><subject>Cell death</subject><subject>Cysteine Endopeptidases - genetics</subject><subject>Cysteine Endopeptidases - metabolism</subject><subject>Fatty liver</subject><subject>Hepatocytes - metabolism</subject><subject>High fat diet</subject><subject>Humanities and Social Sciences</subject><subject>Inflammation</subject><subject>Inflammation - pathology</subject><subject>Kinases</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mortality</subject><subject>multidisciplinary</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Pathogenesis</subject><subject>Phenotypes</subject><subject>Phosphotransferases - metabolism</subject><subject>Protease</subject><subject>Proteinase</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>SUMO protein</subject><subject>Tumor necrosis factor-α</subject><subject>Ubiquitination</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhS0EolXpH2CBIrFhE_ArfmyQUFVgRAUV0LV14zhTjxI72Eml_ns8k1JaFnhjy-e7x_b1QeglwW8JZupd5oQLWWNKa8a1ZjV-go4p5qQmkrKnD9ZH6DTnHS6DaaI4f46OmDhUk2N09eP86yWppuRuXJhzlWcHc7x2E8x-9rlqb6u8TEXO2Ydt9X1z-YXUXfKFrmCK0xxzoSB0lQ_9AONY6mJ4gZ71MGR3ejefoKuP5z_PPtcX3z5tzj5c1LbheK5166i0tgFQUioG0DHcUN5hQaRssO6ZFFR3SmDKJRGMKMwppT3sJao4O0Gb1beLsDNT8iOkWxPBm8NGTFsDafZ2cEaBaDDoRmhMONWt0h20AJpLC7Yne6_3q9e0tKPrbGlHguGR6WMl-GuzjTdGC0WUksXgzZ1Bir8Wl2cz-mzdMEBwccmGSqY5Y5ywgr7-B93FJYXSqj2lhBaCNIWiK2VTzDm5_v4yBJt9CMwaAlNCYA4hMLgUvXr4jPuSP19eALYCuUhh69Lfs_9j-xujCbtb</recordid><startdate>20221122</startdate><enddate>20221122</enddate><creator>Yan, Lingjie</creator><creator>Zhang, Tao</creator><creator>Wang, Kai</creator><creator>Chen, Zezhao</creator><creator>Yang, Yuanxin</creator><creator>Shan, Bing</creator><creator>Sun, Qi</creator><creator>Zhang, Mengmeng</creator><creator>Zhang, Yichi</creator><creator>Zhong, Yedan</creator><creator>Liu, Nan</creator><creator>Gu, Jinyang</creator><creator>Xu, Daichao</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4152-8752</orcidid><orcidid>https://orcid.org/0000-0002-3286-4968</orcidid><orcidid>https://orcid.org/0000-0003-2727-2420</orcidid></search><sort><creationdate>20221122</creationdate><title>SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation</title><author>Yan, Lingjie ; Zhang, Tao ; Wang, Kai ; Chen, Zezhao ; Yang, Yuanxin ; Shan, Bing ; Sun, Qi ; Zhang, Mengmeng ; Zhang, Yichi ; Zhong, Yedan ; Liu, Nan ; Gu, Jinyang ; Xu, Daichao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-9be27cc5aa87783aad30524d06177509f37629d8602471631804222fa09f32843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/109</topic><topic>13/2</topic><topic>13/21</topic><topic>13/51</topic><topic>13/89</topic><topic>13/95</topic><topic>14/19</topic><topic>38/39</topic><topic>38/77</topic><topic>38/90</topic><topic>45/91</topic><topic>631/80/458/538</topic><topic>631/80/82/23</topic><topic>64/110</topic><topic>64/60</topic><topic>692/699/317</topic><topic>82/58</topic><topic>82/83</topic><topic>96/63</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Cell activation</topic><topic>Cell death</topic><topic>Cysteine Endopeptidases - genetics</topic><topic>Cysteine Endopeptidases - metabolism</topic><topic>Fatty liver</topic><topic>Hepatocytes - metabolism</topic><topic>High fat diet</topic><topic>Humanities and Social Sciences</topic><topic>Inflammation</topic><topic>Inflammation - pathology</topic><topic>Kinases</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mortality</topic><topic>multidisciplinary</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Pathogenesis</topic><topic>Phenotypes</topic><topic>Phosphotransferases - metabolism</topic><topic>Protease</topic><topic>Proteinase</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinases - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>SUMO protein</topic><topic>Tumor necrosis factor-α</topic><topic>Ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Lingjie</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Chen, Zezhao</creatorcontrib><creatorcontrib>Yang, Yuanxin</creatorcontrib><creatorcontrib>Shan, Bing</creatorcontrib><creatorcontrib>Sun, Qi</creatorcontrib><creatorcontrib>Zhang, Mengmeng</creatorcontrib><creatorcontrib>Zhang, Yichi</creatorcontrib><creatorcontrib>Zhong, Yedan</creatorcontrib><creatorcontrib>Liu, Nan</creatorcontrib><creatorcontrib>Gu, Jinyang</creatorcontrib><creatorcontrib>Xu, Daichao</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Lingjie</au><au>Zhang, Tao</au><au>Wang, Kai</au><au>Chen, Zezhao</au><au>Yang, Yuanxin</au><au>Shan, Bing</au><au>Sun, Qi</au><au>Zhang, Mengmeng</au><au>Zhang, Yichi</au><au>Zhong, Yedan</au><au>Liu, Nan</au><au>Gu, Jinyang</au><au>Xu, Daichao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-11-22</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>7153</spage><epage>7153</epage><pages>7153-7153</pages><artnum>7153</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Activation of RIPK1-driven cell death and inflammation play important roles in the progression of nonalcoholic steatohepatitis (NASH). However, the mechanism underlying RIPK1 activation in NASH remains unclear. Here we identified SENP1, a SUMO-specific protease, as a key endogenous inhibitor of RIPK1. SENP1 is progressively reduced in proportion to NASH severity in patients. Hepatocyte-specific SENP1-knockout mice develop spontaneous NASH-related phenotypes in a RIPK1 kinase-dependent manner. We demonstrate that SENP1 deficiency sensitizes cells to RIPK1 kinase-dependent apoptosis by promoting RIPK1 activation following TNFα stimulation. Mechanistically, SENP1 deSUMOylates RIPK1 in TNF-R1 signaling complex (TNF-RSC), keeping RIPK1 in check. Loss of SENP1 leads to SUMOylation of RIPK1, which re-orchestrates TNF-RSC and modulates the ubiquitination patterns and activity of RIPK1. Notably, genetic inhibition of RIPK1 effectively reverses disease progression in hepatocyte-specific SENP1-knockout male mice with high-fat-diet-induced nonalcoholic fatty liver. We propose that deSUMOylation of RIPK1 by SENP1 provides a pathophysiologically relevant cell death-restricting checkpoint that modulates RIPK1 activation in the pathogenesis of nonalcoholic steatohepatitis. The receptor-interacting protein (RIPK1) promotes cell death and contributes to nonalcoholic steatohepatitis pathogenesis. Here the authors report that a SUMO-specific protease, SENP1, deSUMOylates RIPK1 and inhibits cell death in a mouse model of non-alcoholic fatty liver disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36414671</pmid><doi>10.1038/s41467-022-34993-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4152-8752</orcidid><orcidid>https://orcid.org/0000-0002-3286-4968</orcidid><orcidid>https://orcid.org/0000-0003-2727-2420</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2022-11, Vol.13 (1), p.7153-7153, Article 7153
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8a650a956901429b89dabaa947cacf14
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/1
13/106
13/109
13/2
13/21
13/51
13/89
13/95
14/19
38/39
38/77
38/90
45/91
631/80/458/538
631/80/82/23
64/110
64/60
692/699/317
82/58
82/83
96/63
Animals
Apoptosis
Cell activation
Cell death
Cysteine Endopeptidases - genetics
Cysteine Endopeptidases - metabolism
Fatty liver
Hepatocytes - metabolism
High fat diet
Humanities and Social Sciences
Inflammation
Inflammation - pathology
Kinases
Liver
Liver diseases
Male
Mice
Mice, Knockout
Mortality
multidisciplinary
Non-alcoholic Fatty Liver Disease - metabolism
Pathogenesis
Phenotypes
Phosphotransferases - metabolism
Protease
Proteinase
Receptor-Interacting Protein Serine-Threonine Kinases - metabolism
Science
Science (multidisciplinary)
SUMO protein
Tumor necrosis factor-α
Ubiquitination
title SENP1 prevents steatohepatitis by suppressing RIPK1-driven apoptosis and inflammation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SENP1%20prevents%20steatohepatitis%20by%20suppressing%20RIPK1-driven%20apoptosis%20and%20inflammation&rft.jtitle=Nature%20communications&rft.au=Yan,%20Lingjie&rft.date=2022-11-22&rft.volume=13&rft.issue=1&rft.spage=7153&rft.epage=7153&rft.pages=7153-7153&rft.artnum=7153&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-34993-0&rft_dat=%3Cproquest_doaj_%3E2738696615%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-9be27cc5aa87783aad30524d06177509f37629d8602471631804222fa09f32843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2738696615&rft_id=info:pmid/36414671&rfr_iscdi=true