Loading…

Creep Aging Behavior of a Thermo-Mechanical Treated 7B04 Aluminum Alloy

Creep aging behavior of a pre-strain and under-age treated 7B04 aluminum alloy (7B04-P for short) was systematically investigated under different temperatures and applied stresses. A lot of dislocation tangles and η’/GPzs were formed in the Al matrix of the 7B04-P al alloy. With the increase in temp...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2023-01, Vol.13 (2), p.182
Main Authors: Lao, Shanfeng, Zhan, Lihua, Qian, Wei, Xu, Yongqian, Ma, Bolin, Liu, Chuhui, Huang, Minghui, Yang, Youliang, Chen, Kuigen, Peng, Nanhui, Gao, Tuanjie, Xi, Hongfei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-92d84dab054edd00429224a97536404770cbf2df2214b805863438b992d3c6a13
cites cdi_FETCH-LOGICAL-c403t-92d84dab054edd00429224a97536404770cbf2df2214b805863438b992d3c6a13
container_end_page
container_issue 2
container_start_page 182
container_title Metals (Basel )
container_volume 13
creator Lao, Shanfeng
Zhan, Lihua
Qian, Wei
Xu, Yongqian
Ma, Bolin
Liu, Chuhui
Huang, Minghui
Yang, Youliang
Chen, Kuigen
Peng, Nanhui
Gao, Tuanjie
Xi, Hongfei
description Creep aging behavior of a pre-strain and under-age treated 7B04 aluminum alloy (7B04-P for short) was systematically investigated under different temperatures and applied stresses. A lot of dislocation tangles and η’/GPzs were formed in the Al matrix of the 7B04-P al alloy. With the increase in temperature and applied stress, the total creep strain and steady-state creep rate increased significantly. However, the mechanical properties of creep-aged 7B04-P al alloy are sensitive to temperature rather than applied stress. The age-hardening precipitates and grain boundaries change obviously when the temperature rises to 160 °C. Compare to the low temperature (less than 160 °C) creep-aged samples, the size of precipitates is much larger, the width of PFZ is broader, and the grain boundary precipitates are more discontinuous and coarsen. As expected, the electrical conductivity is improved after the high-temperature creep aging process at 160 °C. Last but not least, the creep deformation of 7B04-P al alloy almost retains that of AA7B04-T7451. Meanwhile, the mechanical properties after the creep aging process of 7B04-P al alloy are better than that of AA7B04-T7451. It can be suggested that the novel high-temperature creep age forming of the thermo-mechanical treated 7B04 aluminum alloy can enhance the forming efficiency and comprehensive properties for aerospace industries.
doi_str_mv 10.3390/met13020182
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8a65aa26ce5f4bfb8fa3dca8b6b1135b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743186958</galeid><doaj_id>oai_doaj_org_article_8a65aa26ce5f4bfb8fa3dca8b6b1135b</doaj_id><sourcerecordid>A743186958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-92d84dab054edd00429224a97536404770cbf2df2214b805863438b992d3c6a13</originalsourceid><addsrcrecordid>eNpNUU1L5EAQDcsKinryDwQ8SrT6K905joPrCoqX8dxUf830kKRnO5kF_729GxGrDvV4vPcoqqrqisAtYx3cDX4mDCgQRX9UZxSkaLgE8vMbPq0up2kPpRRtoevOqsd19v5Qr7Zx3Nb3fod_Y8p1CjXWm53PQ2pevN3hGC329SZ7nL2r5T3wetUfhzgehwL69H5RnQTsJ3_5Oc-rt18Pm_Xv5vn18Wm9em4sBzY3HXWKOzQguHcOgNOOUo6dFKzlwKUEawJ1gVLCjQKhWsaZMl3xMdsiYefV05LrEu71IccB87tOGPV_IuWtxjxH23utsBWItLVeBG6CUQGZs6hMawhhwpSs6yXrkNOfo59mvU_HPJb1NZWyE-WqQhXV7aLaYgmNY0hzRlva-SHaNPoQC7-SnBHVLoabxWBzmqbsw9eaBPS_T-lvn2IfZNCCUQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779533958</pqid></control><display><type>article</type><title>Creep Aging Behavior of a Thermo-Mechanical Treated 7B04 Aluminum Alloy</title><source>ProQuest - Publicly Available Content Database</source><creator>Lao, Shanfeng ; Zhan, Lihua ; Qian, Wei ; Xu, Yongqian ; Ma, Bolin ; Liu, Chuhui ; Huang, Minghui ; Yang, Youliang ; Chen, Kuigen ; Peng, Nanhui ; Gao, Tuanjie ; Xi, Hongfei</creator><creatorcontrib>Lao, Shanfeng ; Zhan, Lihua ; Qian, Wei ; Xu, Yongqian ; Ma, Bolin ; Liu, Chuhui ; Huang, Minghui ; Yang, Youliang ; Chen, Kuigen ; Peng, Nanhui ; Gao, Tuanjie ; Xi, Hongfei</creatorcontrib><description>Creep aging behavior of a pre-strain and under-age treated 7B04 aluminum alloy (7B04-P for short) was systematically investigated under different temperatures and applied stresses. A lot of dislocation tangles and η’/GPzs were formed in the Al matrix of the 7B04-P al alloy. With the increase in temperature and applied stress, the total creep strain and steady-state creep rate increased significantly. However, the mechanical properties of creep-aged 7B04-P al alloy are sensitive to temperature rather than applied stress. The age-hardening precipitates and grain boundaries change obviously when the temperature rises to 160 °C. Compare to the low temperature (less than 160 °C) creep-aged samples, the size of precipitates is much larger, the width of PFZ is broader, and the grain boundary precipitates are more discontinuous and coarsen. As expected, the electrical conductivity is improved after the high-temperature creep aging process at 160 °C. Last but not least, the creep deformation of 7B04-P al alloy almost retains that of AA7B04-T7451. Meanwhile, the mechanical properties after the creep aging process of 7B04-P al alloy are better than that of AA7B04-T7451. It can be suggested that the novel high-temperature creep age forming of the thermo-mechanical treated 7B04 aluminum alloy can enhance the forming efficiency and comprehensive properties for aerospace industries.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met13020182</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerospace industry ; Age hardening ; Aging (artificial) ; Aircraft ; Al-Zn-Mg-Cu alloy ; Alloys ; Aluminum ; Aluminum alloys ; Aluminum base alloys ; Corrosion resistance ; creep aging forming ; Creep rate ; Creep strength ; Deformation ; dislocation ; Electrical conductivity ; Electrical resistivity ; Grain boundaries ; High temperature ; Hot rolling ; Investigations ; Low temperature ; Mechanical properties ; Microstructure ; Morphology ; precipitate phase ; Precipitates ; Specialty metals industry ; Steady state creep ; Strain ; Strain hardening ; TEM</subject><ispartof>Metals (Basel ), 2023-01, Vol.13 (2), p.182</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-92d84dab054edd00429224a97536404770cbf2df2214b805863438b992d3c6a13</citedby><cites>FETCH-LOGICAL-c403t-92d84dab054edd00429224a97536404770cbf2df2214b805863438b992d3c6a13</cites><orcidid>0000-0001-9419-4149 ; 0000-0002-0401-8019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779533958/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779533958?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Lao, Shanfeng</creatorcontrib><creatorcontrib>Zhan, Lihua</creatorcontrib><creatorcontrib>Qian, Wei</creatorcontrib><creatorcontrib>Xu, Yongqian</creatorcontrib><creatorcontrib>Ma, Bolin</creatorcontrib><creatorcontrib>Liu, Chuhui</creatorcontrib><creatorcontrib>Huang, Minghui</creatorcontrib><creatorcontrib>Yang, Youliang</creatorcontrib><creatorcontrib>Chen, Kuigen</creatorcontrib><creatorcontrib>Peng, Nanhui</creatorcontrib><creatorcontrib>Gao, Tuanjie</creatorcontrib><creatorcontrib>Xi, Hongfei</creatorcontrib><title>Creep Aging Behavior of a Thermo-Mechanical Treated 7B04 Aluminum Alloy</title><title>Metals (Basel )</title><description>Creep aging behavior of a pre-strain and under-age treated 7B04 aluminum alloy (7B04-P for short) was systematically investigated under different temperatures and applied stresses. A lot of dislocation tangles and η’/GPzs were formed in the Al matrix of the 7B04-P al alloy. With the increase in temperature and applied stress, the total creep strain and steady-state creep rate increased significantly. However, the mechanical properties of creep-aged 7B04-P al alloy are sensitive to temperature rather than applied stress. The age-hardening precipitates and grain boundaries change obviously when the temperature rises to 160 °C. Compare to the low temperature (less than 160 °C) creep-aged samples, the size of precipitates is much larger, the width of PFZ is broader, and the grain boundary precipitates are more discontinuous and coarsen. As expected, the electrical conductivity is improved after the high-temperature creep aging process at 160 °C. Last but not least, the creep deformation of 7B04-P al alloy almost retains that of AA7B04-T7451. Meanwhile, the mechanical properties after the creep aging process of 7B04-P al alloy are better than that of AA7B04-T7451. It can be suggested that the novel high-temperature creep age forming of the thermo-mechanical treated 7B04 aluminum alloy can enhance the forming efficiency and comprehensive properties for aerospace industries.</description><subject>Aerospace industry</subject><subject>Age hardening</subject><subject>Aging (artificial)</subject><subject>Aircraft</subject><subject>Al-Zn-Mg-Cu alloy</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Corrosion resistance</subject><subject>creep aging forming</subject><subject>Creep rate</subject><subject>Creep strength</subject><subject>Deformation</subject><subject>dislocation</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Grain boundaries</subject><subject>High temperature</subject><subject>Hot rolling</subject><subject>Investigations</subject><subject>Low temperature</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>precipitate phase</subject><subject>Precipitates</subject><subject>Specialty metals industry</subject><subject>Steady state creep</subject><subject>Strain</subject><subject>Strain hardening</subject><subject>TEM</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1L5EAQDcsKinryDwQ8SrT6K905joPrCoqX8dxUf830kKRnO5kF_729GxGrDvV4vPcoqqrqisAtYx3cDX4mDCgQRX9UZxSkaLgE8vMbPq0up2kPpRRtoevOqsd19v5Qr7Zx3Nb3fod_Y8p1CjXWm53PQ2pevN3hGC329SZ7nL2r5T3wetUfhzgehwL69H5RnQTsJ3_5Oc-rt18Pm_Xv5vn18Wm9em4sBzY3HXWKOzQguHcOgNOOUo6dFKzlwKUEawJ1gVLCjQKhWsaZMl3xMdsiYefV05LrEu71IccB87tOGPV_IuWtxjxH23utsBWItLVeBG6CUQGZs6hMawhhwpSs6yXrkNOfo59mvU_HPJb1NZWyE-WqQhXV7aLaYgmNY0hzRlva-SHaNPoQC7-SnBHVLoabxWBzmqbsw9eaBPS_T-lvn2IfZNCCUQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Lao, Shanfeng</creator><creator>Zhan, Lihua</creator><creator>Qian, Wei</creator><creator>Xu, Yongqian</creator><creator>Ma, Bolin</creator><creator>Liu, Chuhui</creator><creator>Huang, Minghui</creator><creator>Yang, Youliang</creator><creator>Chen, Kuigen</creator><creator>Peng, Nanhui</creator><creator>Gao, Tuanjie</creator><creator>Xi, Hongfei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9419-4149</orcidid><orcidid>https://orcid.org/0000-0002-0401-8019</orcidid></search><sort><creationdate>20230101</creationdate><title>Creep Aging Behavior of a Thermo-Mechanical Treated 7B04 Aluminum Alloy</title><author>Lao, Shanfeng ; Zhan, Lihua ; Qian, Wei ; Xu, Yongqian ; Ma, Bolin ; Liu, Chuhui ; Huang, Minghui ; Yang, Youliang ; Chen, Kuigen ; Peng, Nanhui ; Gao, Tuanjie ; Xi, Hongfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-92d84dab054edd00429224a97536404770cbf2df2214b805863438b992d3c6a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerospace industry</topic><topic>Age hardening</topic><topic>Aging (artificial)</topic><topic>Aircraft</topic><topic>Al-Zn-Mg-Cu alloy</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Corrosion resistance</topic><topic>creep aging forming</topic><topic>Creep rate</topic><topic>Creep strength</topic><topic>Deformation</topic><topic>dislocation</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Grain boundaries</topic><topic>High temperature</topic><topic>Hot rolling</topic><topic>Investigations</topic><topic>Low temperature</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>precipitate phase</topic><topic>Precipitates</topic><topic>Specialty metals industry</topic><topic>Steady state creep</topic><topic>Strain</topic><topic>Strain hardening</topic><topic>TEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lao, Shanfeng</creatorcontrib><creatorcontrib>Zhan, Lihua</creatorcontrib><creatorcontrib>Qian, Wei</creatorcontrib><creatorcontrib>Xu, Yongqian</creatorcontrib><creatorcontrib>Ma, Bolin</creatorcontrib><creatorcontrib>Liu, Chuhui</creatorcontrib><creatorcontrib>Huang, Minghui</creatorcontrib><creatorcontrib>Yang, Youliang</creatorcontrib><creatorcontrib>Chen, Kuigen</creatorcontrib><creatorcontrib>Peng, Nanhui</creatorcontrib><creatorcontrib>Gao, Tuanjie</creatorcontrib><creatorcontrib>Xi, Hongfei</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lao, Shanfeng</au><au>Zhan, Lihua</au><au>Qian, Wei</au><au>Xu, Yongqian</au><au>Ma, Bolin</au><au>Liu, Chuhui</au><au>Huang, Minghui</au><au>Yang, Youliang</au><au>Chen, Kuigen</au><au>Peng, Nanhui</au><au>Gao, Tuanjie</au><au>Xi, Hongfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep Aging Behavior of a Thermo-Mechanical Treated 7B04 Aluminum Alloy</atitle><jtitle>Metals (Basel )</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>13</volume><issue>2</issue><spage>182</spage><pages>182-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>Creep aging behavior of a pre-strain and under-age treated 7B04 aluminum alloy (7B04-P for short) was systematically investigated under different temperatures and applied stresses. A lot of dislocation tangles and η’/GPzs were formed in the Al matrix of the 7B04-P al alloy. With the increase in temperature and applied stress, the total creep strain and steady-state creep rate increased significantly. However, the mechanical properties of creep-aged 7B04-P al alloy are sensitive to temperature rather than applied stress. The age-hardening precipitates and grain boundaries change obviously when the temperature rises to 160 °C. Compare to the low temperature (less than 160 °C) creep-aged samples, the size of precipitates is much larger, the width of PFZ is broader, and the grain boundary precipitates are more discontinuous and coarsen. As expected, the electrical conductivity is improved after the high-temperature creep aging process at 160 °C. Last but not least, the creep deformation of 7B04-P al alloy almost retains that of AA7B04-T7451. Meanwhile, the mechanical properties after the creep aging process of 7B04-P al alloy are better than that of AA7B04-T7451. It can be suggested that the novel high-temperature creep age forming of the thermo-mechanical treated 7B04 aluminum alloy can enhance the forming efficiency and comprehensive properties for aerospace industries.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met13020182</doi><orcidid>https://orcid.org/0000-0001-9419-4149</orcidid><orcidid>https://orcid.org/0000-0002-0401-8019</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2023-01, Vol.13 (2), p.182
issn 2075-4701
2075-4701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8a65aa26ce5f4bfb8fa3dca8b6b1135b
source ProQuest - Publicly Available Content Database
subjects Aerospace industry
Age hardening
Aging (artificial)
Aircraft
Al-Zn-Mg-Cu alloy
Alloys
Aluminum
Aluminum alloys
Aluminum base alloys
Corrosion resistance
creep aging forming
Creep rate
Creep strength
Deformation
dislocation
Electrical conductivity
Electrical resistivity
Grain boundaries
High temperature
Hot rolling
Investigations
Low temperature
Mechanical properties
Microstructure
Morphology
precipitate phase
Precipitates
Specialty metals industry
Steady state creep
Strain
Strain hardening
TEM
title Creep Aging Behavior of a Thermo-Mechanical Treated 7B04 Aluminum Alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20Aging%20Behavior%20of%20a%20Thermo-Mechanical%20Treated%207B04%20Aluminum%20Alloy&rft.jtitle=Metals%20(Basel%20)&rft.au=Lao,%20Shanfeng&rft.date=2023-01-01&rft.volume=13&rft.issue=2&rft.spage=182&rft.pages=182-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met13020182&rft_dat=%3Cgale_doaj_%3EA743186958%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-92d84dab054edd00429224a97536404770cbf2df2214b805863438b992d3c6a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779533958&rft_id=info:pmid/&rft_galeid=A743186958&rfr_iscdi=true