Loading…
Asymmetric Stereo High Dynamic Range Imaging with Smartphone Cameras
Stereo high dynamic range imaging (SHDRI) offers a more temporally stable solution to high dynamic range (HDR) imaging from low dynamic range input images compared to bracketing and removes the loss of accuracy that single-image HDR solutions offer. However, few solutions currently exist that take a...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-09, Vol.24 (18), p.5876 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-c4cc181e1358fa0d02caa4ad2e597f12bb3da9a4439cb808d2cae5b602b9bd863 |
container_end_page | |
container_issue | 18 |
container_start_page | 5876 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Russell, Finn Midgley, William J B |
description | Stereo high dynamic range imaging (SHDRI) offers a more temporally stable solution to high dynamic range (HDR) imaging from low dynamic range input images compared to bracketing and removes the loss of accuracy that single-image HDR solutions offer. However, few solutions currently exist that take advantage of the different (asymmetric) lenses, commonly found on modern smartphones, to achieve SHDRI. This paper presents a method that achieves single-shot asymmetric HDR fusion via a reference-based deep learning approach. Results demonstrate a system that is more robust to aperture and image signal processing pipeline differences than existing solutions. |
doi_str_mv | 10.3390/s24185876 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8a72949ea15541458962b776fb7d51d7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8a72949ea15541458962b776fb7d51d7</doaj_id><sourcerecordid>3110910353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-c4cc181e1358fa0d02caa4ad2e597f12bb3da9a4439cb808d2cae5b602b9bd863</originalsourceid><addsrcrecordid>eNpdkV1rFDEUhoMo9kMv_AMy4I29WM3Jx0xyJWWrdqEgWL0OJ5nMbJaZyZrMVvbfG7t1ab06Iefh4U1eQt4A_cC5ph8zE6Ckaupn5BQEEwvFGH3-6HxCznLeUMo45-olOeG6zJrBKbm6zPtx9HMKrrqdffKxug79urraTziWu-849b5ajdiHqa9-h3ld3Y6Y5u06Tr5a4ugT5lfkRYdD9q8f5jn5-eXzj-X14ubb19Xy8mbheE3nhRPOgQIPXKoOaUuZQxTYMi910wGzlreoUQiunVVUtWXvpa0ps9q2qubnZHXwthE3ZptCSbI3EYO5v4ipNyVacIM3ChumhfYIUgoQUuma2aapO9u0EtqmuD4dXNudHX3r_DQnHJ5In26msDZ9vDMAorwGZDG8fzCk-Gvn82zGkJ0fBpx83GXDAagGyiUv6Lv_0E3cpan81T1Vlzo0K9TFgXIp5px8d0wD1Pwt2hyLLuzbx_GP5L9m-R_dm6Gj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110693392</pqid></control><display><type>article</type><title>Asymmetric Stereo High Dynamic Range Imaging with Smartphone Cameras</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Russell, Finn ; Midgley, William J B</creator><creatorcontrib>Russell, Finn ; Midgley, William J B</creatorcontrib><description>Stereo high dynamic range imaging (SHDRI) offers a more temporally stable solution to high dynamic range (HDR) imaging from low dynamic range input images compared to bracketing and removes the loss of accuracy that single-image HDR solutions offer. However, few solutions currently exist that take advantage of the different (asymmetric) lenses, commonly found on modern smartphones, to achieve SHDRI. This paper presents a method that achieves single-shot asymmetric HDR fusion via a reference-based deep learning approach. Results demonstrate a system that is more robust to aperture and image signal processing pipeline differences than existing solutions.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24185876</identifier><identifier>PMID: 39338621</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Aperture ; asymmetric imaging ; Asymmetry ; Deep learning ; Digital cameras ; high dynamic range ; Methods ; Neural networks ; Smartphones ; stereo imaging</subject><ispartof>Sensors (Basel, Switzerland), 2024-09, Vol.24 (18), p.5876</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-c4cc181e1358fa0d02caa4ad2e597f12bb3da9a4439cb808d2cae5b602b9bd863</cites><orcidid>0000-0003-3786-1691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3110693392/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3110693392?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39338621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Russell, Finn</creatorcontrib><creatorcontrib>Midgley, William J B</creatorcontrib><title>Asymmetric Stereo High Dynamic Range Imaging with Smartphone Cameras</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Stereo high dynamic range imaging (SHDRI) offers a more temporally stable solution to high dynamic range (HDR) imaging from low dynamic range input images compared to bracketing and removes the loss of accuracy that single-image HDR solutions offer. However, few solutions currently exist that take advantage of the different (asymmetric) lenses, commonly found on modern smartphones, to achieve SHDRI. This paper presents a method that achieves single-shot asymmetric HDR fusion via a reference-based deep learning approach. Results demonstrate a system that is more robust to aperture and image signal processing pipeline differences than existing solutions.</description><subject>Algorithms</subject><subject>Aperture</subject><subject>asymmetric imaging</subject><subject>Asymmetry</subject><subject>Deep learning</subject><subject>Digital cameras</subject><subject>high dynamic range</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Smartphones</subject><subject>stereo imaging</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkV1rFDEUhoMo9kMv_AMy4I29WM3Jx0xyJWWrdqEgWL0OJ5nMbJaZyZrMVvbfG7t1ab06Iefh4U1eQt4A_cC5ph8zE6Ckaupn5BQEEwvFGH3-6HxCznLeUMo45-olOeG6zJrBKbm6zPtx9HMKrrqdffKxug79urraTziWu-849b5ajdiHqa9-h3ld3Y6Y5u06Tr5a4ugT5lfkRYdD9q8f5jn5-eXzj-X14ubb19Xy8mbheE3nhRPOgQIPXKoOaUuZQxTYMi910wGzlreoUQiunVVUtWXvpa0ps9q2qubnZHXwthE3ZptCSbI3EYO5v4ipNyVacIM3ChumhfYIUgoQUuma2aapO9u0EtqmuD4dXNudHX3r_DQnHJ5In26msDZ9vDMAorwGZDG8fzCk-Gvn82zGkJ0fBpx83GXDAagGyiUv6Lv_0E3cpan81T1Vlzo0K9TFgXIp5px8d0wD1Pwt2hyLLuzbx_GP5L9m-R_dm6Gj</recordid><startdate>20240910</startdate><enddate>20240910</enddate><creator>Russell, Finn</creator><creator>Midgley, William J B</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3786-1691</orcidid></search><sort><creationdate>20240910</creationdate><title>Asymmetric Stereo High Dynamic Range Imaging with Smartphone Cameras</title><author>Russell, Finn ; Midgley, William J B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-c4cc181e1358fa0d02caa4ad2e597f12bb3da9a4439cb808d2cae5b602b9bd863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Aperture</topic><topic>asymmetric imaging</topic><topic>Asymmetry</topic><topic>Deep learning</topic><topic>Digital cameras</topic><topic>high dynamic range</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Smartphones</topic><topic>stereo imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russell, Finn</creatorcontrib><creatorcontrib>Midgley, William J B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russell, Finn</au><au>Midgley, William J B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Stereo High Dynamic Range Imaging with Smartphone Cameras</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-09-10</date><risdate>2024</risdate><volume>24</volume><issue>18</issue><spage>5876</spage><pages>5876-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Stereo high dynamic range imaging (SHDRI) offers a more temporally stable solution to high dynamic range (HDR) imaging from low dynamic range input images compared to bracketing and removes the loss of accuracy that single-image HDR solutions offer. However, few solutions currently exist that take advantage of the different (asymmetric) lenses, commonly found on modern smartphones, to achieve SHDRI. This paper presents a method that achieves single-shot asymmetric HDR fusion via a reference-based deep learning approach. Results demonstrate a system that is more robust to aperture and image signal processing pipeline differences than existing solutions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39338621</pmid><doi>10.3390/s24185876</doi><orcidid>https://orcid.org/0000-0003-3786-1691</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-09, Vol.24 (18), p.5876 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8a72949ea15541458962b776fb7d51d7 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Algorithms Aperture asymmetric imaging Asymmetry Deep learning Digital cameras high dynamic range Methods Neural networks Smartphones stereo imaging |
title | Asymmetric Stereo High Dynamic Range Imaging with Smartphone Cameras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Stereo%20High%20Dynamic%20Range%20Imaging%20with%20Smartphone%20Cameras&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Russell,%20Finn&rft.date=2024-09-10&rft.volume=24&rft.issue=18&rft.spage=5876&rft.pages=5876-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24185876&rft_dat=%3Cproquest_doaj_%3E3110910353%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-c4cc181e1358fa0d02caa4ad2e597f12bb3da9a4439cb808d2cae5b602b9bd863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3110693392&rft_id=info:pmid/39338621&rfr_iscdi=true |