Loading…

Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems

We report a study of nanophases in the La2O3–MO3 (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated La2O3 + MO3 (M = Mo, W) mixtures and the final ceramics have been characterized by differential scanning calorimetry (DSC) and X...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2023-08, Vol.16 (15), p.5637
Main Authors: Baldin, Egor, Lyskov, Nikolay, Vorobieva, Galina, Kolbanev, Igor, Karyagina, Olga, Stolbov, Dmitry, Voronkova, Valentina, Shlyakhtina, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c320t-69b2ce6ff0beb3d187b53cce88c1cfe2c591b7c25e3c1c6d3da4aa6d5ff0307c3
container_end_page
container_issue 15
container_start_page 5637
container_title Energies (Basel)
container_volume 16
creator Baldin, Egor
Lyskov, Nikolay
Vorobieva, Galina
Kolbanev, Igor
Karyagina, Olga
Stolbov, Dmitry
Voronkova, Valentina
Shlyakhtina, Anna
description We report a study of nanophases in the La2O3–MO3 (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated La2O3 + MO3 (M = Mo, W) mixtures and the final ceramics have been characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) with Rietveld refinement. The microstructure of the materials has been examined by scanning electron microscopy (SEM), and their conductivity in dry and wet air has been determined using impedance spectroscopy. In both systems, the formation of hexagonal La15M8.5O48 (phase II, 5H polytype) (M = Mo, W) nanophases is observed for the composition 1:1, with exothermic peaks in the DSC curve in the range ~480–520 °C for La15Mo8.5O48 and ~685–760 °C for La15W8.5O48, respectively. The crystallite size of the nanocrystalline tungstates is ~40 nm, and that of the nanocrystalline molybdates is ~50 nm. At higher temperatures (~630–690 and ~1000 °C), we observe irreversible reconstructive phase transitions of hexagonal La15Mo8.5O48 to tetragonal γ-La2MoO6 and of hexagonal La15W8.5O48 to orthorhombic β-La2WO6. We compare the temperature dependences of conductivity for nanoparticulate and microcrystalline hexagonal phases and high-temperature phases differing in density. Above 600 °C, oxygen ion conduction prevails in the coarse-grained La18W10O57 (phase I, 6H polytype) ceramic. Low-density La15W8.5O48 and La15Mo8.5O48 (phase II, 5H polytype) nanoceramics exhibit predominantly electron conduction with an activation energy of 1.36 and 1.35 eV, respectively, in dry air.
doi_str_mv 10.3390/en16155637
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8a8e66c4cab846acb97644f36e5d1c44</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8a8e66c4cab846acb97644f36e5d1c44</doaj_id><sourcerecordid>2849026835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-69b2ce6ff0beb3d187b53cce88c1cfe2c591b7c25e3c1c6d3da4aa6d5ff0307c3</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWGovPkHAi4qryU6S3T14kKK20NpDFY8hm51tt7SbmmzB3nwH39AncbWizmWGn3--YX5Cjjm7BMjYFdZccSkVJHukw7NMRZwlsP9vPiS9EBasLQAOAB0ymG7rZo6hCtSVdICvZuZqs6QPpnbruQkYaFXT1kFHJp7Ax9v7eAL0dEyv6dhd0OczOt2GBlfhiByUZhmw99O75Onu9rE_iEaT-2H_ZhRZiFkTqSyPLaqyZDnmUPA0ySVYi2lquS0xtjLjeWJjidAKqoDCCGNUIdsNYImFLhnuuIUzC7321cr4rXam0t-C8zNtfFPZJerUpKiUFdbkqVDG5lmihChBoSy4FaJlnexYa-9eNhgavXAb374fdJyKjMUqBdm6zncu610IHsvfq5zpr-D1X_DwCd4Kc8Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849026835</pqid></control><display><type>article</type><title>Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems</title><source>Publicly Available Content Database</source><creator>Baldin, Egor ; Lyskov, Nikolay ; Vorobieva, Galina ; Kolbanev, Igor ; Karyagina, Olga ; Stolbov, Dmitry ; Voronkova, Valentina ; Shlyakhtina, Anna</creator><creatorcontrib>Baldin, Egor ; Lyskov, Nikolay ; Vorobieva, Galina ; Kolbanev, Igor ; Karyagina, Olga ; Stolbov, Dmitry ; Voronkova, Valentina ; Shlyakhtina, Anna</creatorcontrib><description>We report a study of nanophases in the La2O3–MO3 (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated La2O3 + MO3 (M = Mo, W) mixtures and the final ceramics have been characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) with Rietveld refinement. The microstructure of the materials has been examined by scanning electron microscopy (SEM), and their conductivity in dry and wet air has been determined using impedance spectroscopy. In both systems, the formation of hexagonal La15M8.5O48 (phase II, 5H polytype) (M = Mo, W) nanophases is observed for the composition 1:1, with exothermic peaks in the DSC curve in the range ~480–520 °C for La15Mo8.5O48 and ~685–760 °C for La15W8.5O48, respectively. The crystallite size of the nanocrystalline tungstates is ~40 nm, and that of the nanocrystalline molybdates is ~50 nm. At higher temperatures (~630–690 and ~1000 °C), we observe irreversible reconstructive phase transitions of hexagonal La15Mo8.5O48 to tetragonal γ-La2MoO6 and of hexagonal La15W8.5O48 to orthorhombic β-La2WO6. We compare the temperature dependences of conductivity for nanoparticulate and microcrystalline hexagonal phases and high-temperature phases differing in density. Above 600 °C, oxygen ion conduction prevails in the coarse-grained La18W10O57 (phase I, 6H polytype) ceramic. Low-density La15W8.5O48 and La15Mo8.5O48 (phase II, 5H polytype) nanoceramics exhibit predominantly electron conduction with an activation energy of 1.36 and 1.35 eV, respectively, in dry air.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en16155637</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ceramics ; lanthanum molybdate ; lanthanum tungstate ; mechanochemical synthesis ; Morphology ; nanomaterials ; oxygen ion conductivity ; Particle size ; Phase transitions ; polytypism ; Radiation ; Single crystals ; Solid solutions ; Spectrum analysis ; Temperature</subject><ispartof>Energies (Basel), 2023-08, Vol.16 (15), p.5637</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-69b2ce6ff0beb3d187b53cce88c1cfe2c591b7c25e3c1c6d3da4aa6d5ff0307c3</cites><orcidid>0000-0001-8466-2455 ; 0000-0001-8682-2328 ; 0000-0002-3002-5677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2849026835/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2849026835?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Baldin, Egor</creatorcontrib><creatorcontrib>Lyskov, Nikolay</creatorcontrib><creatorcontrib>Vorobieva, Galina</creatorcontrib><creatorcontrib>Kolbanev, Igor</creatorcontrib><creatorcontrib>Karyagina, Olga</creatorcontrib><creatorcontrib>Stolbov, Dmitry</creatorcontrib><creatorcontrib>Voronkova, Valentina</creatorcontrib><creatorcontrib>Shlyakhtina, Anna</creatorcontrib><title>Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems</title><title>Energies (Basel)</title><description>We report a study of nanophases in the La2O3–MO3 (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated La2O3 + MO3 (M = Mo, W) mixtures and the final ceramics have been characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) with Rietveld refinement. The microstructure of the materials has been examined by scanning electron microscopy (SEM), and their conductivity in dry and wet air has been determined using impedance spectroscopy. In both systems, the formation of hexagonal La15M8.5O48 (phase II, 5H polytype) (M = Mo, W) nanophases is observed for the composition 1:1, with exothermic peaks in the DSC curve in the range ~480–520 °C for La15Mo8.5O48 and ~685–760 °C for La15W8.5O48, respectively. The crystallite size of the nanocrystalline tungstates is ~40 nm, and that of the nanocrystalline molybdates is ~50 nm. At higher temperatures (~630–690 and ~1000 °C), we observe irreversible reconstructive phase transitions of hexagonal La15Mo8.5O48 to tetragonal γ-La2MoO6 and of hexagonal La15W8.5O48 to orthorhombic β-La2WO6. We compare the temperature dependences of conductivity for nanoparticulate and microcrystalline hexagonal phases and high-temperature phases differing in density. Above 600 °C, oxygen ion conduction prevails in the coarse-grained La18W10O57 (phase I, 6H polytype) ceramic. Low-density La15W8.5O48 and La15Mo8.5O48 (phase II, 5H polytype) nanoceramics exhibit predominantly electron conduction with an activation energy of 1.36 and 1.35 eV, respectively, in dry air.</description><subject>Ceramics</subject><subject>lanthanum molybdate</subject><subject>lanthanum tungstate</subject><subject>mechanochemical synthesis</subject><subject>Morphology</subject><subject>nanomaterials</subject><subject>oxygen ion conductivity</subject><subject>Particle size</subject><subject>Phase transitions</subject><subject>polytypism</subject><subject>Radiation</subject><subject>Single crystals</subject><subject>Solid solutions</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMFKAzEQhoMoWGovPkHAi4qryU6S3T14kKK20NpDFY8hm51tt7SbmmzB3nwH39AncbWizmWGn3--YX5Cjjm7BMjYFdZccSkVJHukw7NMRZwlsP9vPiS9EBasLQAOAB0ymG7rZo6hCtSVdICvZuZqs6QPpnbruQkYaFXT1kFHJp7Ax9v7eAL0dEyv6dhd0OczOt2GBlfhiByUZhmw99O75Onu9rE_iEaT-2H_ZhRZiFkTqSyPLaqyZDnmUPA0ySVYi2lquS0xtjLjeWJjidAKqoDCCGNUIdsNYImFLhnuuIUzC7321cr4rXam0t-C8zNtfFPZJerUpKiUFdbkqVDG5lmihChBoSy4FaJlnexYa-9eNhgavXAb374fdJyKjMUqBdm6zncu610IHsvfq5zpr-D1X_DwCd4Kc8Q</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Baldin, Egor</creator><creator>Lyskov, Nikolay</creator><creator>Vorobieva, Galina</creator><creator>Kolbanev, Igor</creator><creator>Karyagina, Olga</creator><creator>Stolbov, Dmitry</creator><creator>Voronkova, Valentina</creator><creator>Shlyakhtina, Anna</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8466-2455</orcidid><orcidid>https://orcid.org/0000-0001-8682-2328</orcidid><orcidid>https://orcid.org/0000-0002-3002-5677</orcidid></search><sort><creationdate>20230801</creationdate><title>Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems</title><author>Baldin, Egor ; Lyskov, Nikolay ; Vorobieva, Galina ; Kolbanev, Igor ; Karyagina, Olga ; Stolbov, Dmitry ; Voronkova, Valentina ; Shlyakhtina, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-69b2ce6ff0beb3d187b53cce88c1cfe2c591b7c25e3c1c6d3da4aa6d5ff0307c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ceramics</topic><topic>lanthanum molybdate</topic><topic>lanthanum tungstate</topic><topic>mechanochemical synthesis</topic><topic>Morphology</topic><topic>nanomaterials</topic><topic>oxygen ion conductivity</topic><topic>Particle size</topic><topic>Phase transitions</topic><topic>polytypism</topic><topic>Radiation</topic><topic>Single crystals</topic><topic>Solid solutions</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baldin, Egor</creatorcontrib><creatorcontrib>Lyskov, Nikolay</creatorcontrib><creatorcontrib>Vorobieva, Galina</creatorcontrib><creatorcontrib>Kolbanev, Igor</creatorcontrib><creatorcontrib>Karyagina, Olga</creatorcontrib><creatorcontrib>Stolbov, Dmitry</creatorcontrib><creatorcontrib>Voronkova, Valentina</creatorcontrib><creatorcontrib>Shlyakhtina, Anna</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldin, Egor</au><au>Lyskov, Nikolay</au><au>Vorobieva, Galina</au><au>Kolbanev, Igor</au><au>Karyagina, Olga</au><au>Stolbov, Dmitry</au><au>Voronkova, Valentina</au><au>Shlyakhtina, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems</atitle><jtitle>Energies (Basel)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>16</volume><issue>15</issue><spage>5637</spage><pages>5637-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>We report a study of nanophases in the La2O3–MO3 (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated La2O3 + MO3 (M = Mo, W) mixtures and the final ceramics have been characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) with Rietveld refinement. The microstructure of the materials has been examined by scanning electron microscopy (SEM), and their conductivity in dry and wet air has been determined using impedance spectroscopy. In both systems, the formation of hexagonal La15M8.5O48 (phase II, 5H polytype) (M = Mo, W) nanophases is observed for the composition 1:1, with exothermic peaks in the DSC curve in the range ~480–520 °C for La15Mo8.5O48 and ~685–760 °C for La15W8.5O48, respectively. The crystallite size of the nanocrystalline tungstates is ~40 nm, and that of the nanocrystalline molybdates is ~50 nm. At higher temperatures (~630–690 and ~1000 °C), we observe irreversible reconstructive phase transitions of hexagonal La15Mo8.5O48 to tetragonal γ-La2MoO6 and of hexagonal La15W8.5O48 to orthorhombic β-La2WO6. We compare the temperature dependences of conductivity for nanoparticulate and microcrystalline hexagonal phases and high-temperature phases differing in density. Above 600 °C, oxygen ion conduction prevails in the coarse-grained La18W10O57 (phase I, 6H polytype) ceramic. Low-density La15W8.5O48 and La15Mo8.5O48 (phase II, 5H polytype) nanoceramics exhibit predominantly electron conduction with an activation energy of 1.36 and 1.35 eV, respectively, in dry air.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en16155637</doi><orcidid>https://orcid.org/0000-0001-8466-2455</orcidid><orcidid>https://orcid.org/0000-0001-8682-2328</orcidid><orcidid>https://orcid.org/0000-0002-3002-5677</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2023-08, Vol.16 (15), p.5637
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8a8e66c4cab846acb97644f36e5d1c44
source Publicly Available Content Database
subjects Ceramics
lanthanum molybdate
lanthanum tungstate
mechanochemical synthesis
Morphology
nanomaterials
oxygen ion conductivity
Particle size
Phase transitions
polytypism
Radiation
Single crystals
Solid solutions
Spectrum analysis
Temperature
title Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Hexagonal%20Nanophases%20in%20the%20La2O3%E2%80%93MO3%20(M%20=%20Mo,%20W)%20Systems&rft.jtitle=Energies%20(Basel)&rft.au=Baldin,%20Egor&rft.date=2023-08-01&rft.volume=16&rft.issue=15&rft.spage=5637&rft.pages=5637-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en16155637&rft_dat=%3Cproquest_doaj_%3E2849026835%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-69b2ce6ff0beb3d187b53cce88c1cfe2c591b7c25e3c1c6d3da4aa6d5ff0307c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2849026835&rft_id=info:pmid/&rfr_iscdi=true