Loading…
Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems
We report a study of nanophases in the La2O3–MO3 (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated La2O3 + MO3 (M = Mo, W) mixtures and the final ceramics have been characterized by differential scanning calorimetry (DSC) and X...
Saved in:
Published in: | Energies (Basel) 2023-08, Vol.16 (15), p.5637 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c320t-69b2ce6ff0beb3d187b53cce88c1cfe2c591b7c25e3c1c6d3da4aa6d5ff0307c3 |
container_end_page | |
container_issue | 15 |
container_start_page | 5637 |
container_title | Energies (Basel) |
container_volume | 16 |
creator | Baldin, Egor Lyskov, Nikolay Vorobieva, Galina Kolbanev, Igor Karyagina, Olga Stolbov, Dmitry Voronkova, Valentina Shlyakhtina, Anna |
description | We report a study of nanophases in the La2O3–MO3 (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated La2O3 + MO3 (M = Mo, W) mixtures and the final ceramics have been characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) with Rietveld refinement. The microstructure of the materials has been examined by scanning electron microscopy (SEM), and their conductivity in dry and wet air has been determined using impedance spectroscopy. In both systems, the formation of hexagonal La15M8.5O48 (phase II, 5H polytype) (M = Mo, W) nanophases is observed for the composition 1:1, with exothermic peaks in the DSC curve in the range ~480–520 °C for La15Mo8.5O48 and ~685–760 °C for La15W8.5O48, respectively. The crystallite size of the nanocrystalline tungstates is ~40 nm, and that of the nanocrystalline molybdates is ~50 nm. At higher temperatures (~630–690 and ~1000 °C), we observe irreversible reconstructive phase transitions of hexagonal La15Mo8.5O48 to tetragonal γ-La2MoO6 and of hexagonal La15W8.5O48 to orthorhombic β-La2WO6. We compare the temperature dependences of conductivity for nanoparticulate and microcrystalline hexagonal phases and high-temperature phases differing in density. Above 600 °C, oxygen ion conduction prevails in the coarse-grained La18W10O57 (phase I, 6H polytype) ceramic. Low-density La15W8.5O48 and La15Mo8.5O48 (phase II, 5H polytype) nanoceramics exhibit predominantly electron conduction with an activation energy of 1.36 and 1.35 eV, respectively, in dry air. |
doi_str_mv | 10.3390/en16155637 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8a8e66c4cab846acb97644f36e5d1c44</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8a8e66c4cab846acb97644f36e5d1c44</doaj_id><sourcerecordid>2849026835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-69b2ce6ff0beb3d187b53cce88c1cfe2c591b7c25e3c1c6d3da4aa6d5ff0307c3</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWGovPkHAi4qryU6S3T14kKK20NpDFY8hm51tt7SbmmzB3nwH39AncbWizmWGn3--YX5Cjjm7BMjYFdZccSkVJHukw7NMRZwlsP9vPiS9EBasLQAOAB0ymG7rZo6hCtSVdICvZuZqs6QPpnbruQkYaFXT1kFHJp7Ax9v7eAL0dEyv6dhd0OczOt2GBlfhiByUZhmw99O75Onu9rE_iEaT-2H_ZhRZiFkTqSyPLaqyZDnmUPA0ySVYi2lquS0xtjLjeWJjidAKqoDCCGNUIdsNYImFLhnuuIUzC7321cr4rXam0t-C8zNtfFPZJerUpKiUFdbkqVDG5lmihChBoSy4FaJlnexYa-9eNhgavXAb374fdJyKjMUqBdm6zncu610IHsvfq5zpr-D1X_DwCd4Kc8Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849026835</pqid></control><display><type>article</type><title>Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems</title><source>Publicly Available Content Database</source><creator>Baldin, Egor ; Lyskov, Nikolay ; Vorobieva, Galina ; Kolbanev, Igor ; Karyagina, Olga ; Stolbov, Dmitry ; Voronkova, Valentina ; Shlyakhtina, Anna</creator><creatorcontrib>Baldin, Egor ; Lyskov, Nikolay ; Vorobieva, Galina ; Kolbanev, Igor ; Karyagina, Olga ; Stolbov, Dmitry ; Voronkova, Valentina ; Shlyakhtina, Anna</creatorcontrib><description>We report a study of nanophases in the La2O3–MO3 (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated La2O3 + MO3 (M = Mo, W) mixtures and the final ceramics have been characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) with Rietveld refinement. The microstructure of the materials has been examined by scanning electron microscopy (SEM), and their conductivity in dry and wet air has been determined using impedance spectroscopy. In both systems, the formation of hexagonal La15M8.5O48 (phase II, 5H polytype) (M = Mo, W) nanophases is observed for the composition 1:1, with exothermic peaks in the DSC curve in the range ~480–520 °C for La15Mo8.5O48 and ~685–760 °C for La15W8.5O48, respectively. The crystallite size of the nanocrystalline tungstates is ~40 nm, and that of the nanocrystalline molybdates is ~50 nm. At higher temperatures (~630–690 and ~1000 °C), we observe irreversible reconstructive phase transitions of hexagonal La15Mo8.5O48 to tetragonal γ-La2MoO6 and of hexagonal La15W8.5O48 to orthorhombic β-La2WO6. We compare the temperature dependences of conductivity for nanoparticulate and microcrystalline hexagonal phases and high-temperature phases differing in density. Above 600 °C, oxygen ion conduction prevails in the coarse-grained La18W10O57 (phase I, 6H polytype) ceramic. Low-density La15W8.5O48 and La15Mo8.5O48 (phase II, 5H polytype) nanoceramics exhibit predominantly electron conduction with an activation energy of 1.36 and 1.35 eV, respectively, in dry air.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en16155637</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ceramics ; lanthanum molybdate ; lanthanum tungstate ; mechanochemical synthesis ; Morphology ; nanomaterials ; oxygen ion conductivity ; Particle size ; Phase transitions ; polytypism ; Radiation ; Single crystals ; Solid solutions ; Spectrum analysis ; Temperature</subject><ispartof>Energies (Basel), 2023-08, Vol.16 (15), p.5637</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-69b2ce6ff0beb3d187b53cce88c1cfe2c591b7c25e3c1c6d3da4aa6d5ff0307c3</cites><orcidid>0000-0001-8466-2455 ; 0000-0001-8682-2328 ; 0000-0002-3002-5677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2849026835/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2849026835?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Baldin, Egor</creatorcontrib><creatorcontrib>Lyskov, Nikolay</creatorcontrib><creatorcontrib>Vorobieva, Galina</creatorcontrib><creatorcontrib>Kolbanev, Igor</creatorcontrib><creatorcontrib>Karyagina, Olga</creatorcontrib><creatorcontrib>Stolbov, Dmitry</creatorcontrib><creatorcontrib>Voronkova, Valentina</creatorcontrib><creatorcontrib>Shlyakhtina, Anna</creatorcontrib><title>Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems</title><title>Energies (Basel)</title><description>We report a study of nanophases in the La2O3–MO3 (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated La2O3 + MO3 (M = Mo, W) mixtures and the final ceramics have been characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) with Rietveld refinement. The microstructure of the materials has been examined by scanning electron microscopy (SEM), and their conductivity in dry and wet air has been determined using impedance spectroscopy. In both systems, the formation of hexagonal La15M8.5O48 (phase II, 5H polytype) (M = Mo, W) nanophases is observed for the composition 1:1, with exothermic peaks in the DSC curve in the range ~480–520 °C for La15Mo8.5O48 and ~685–760 °C for La15W8.5O48, respectively. The crystallite size of the nanocrystalline tungstates is ~40 nm, and that of the nanocrystalline molybdates is ~50 nm. At higher temperatures (~630–690 and ~1000 °C), we observe irreversible reconstructive phase transitions of hexagonal La15Mo8.5O48 to tetragonal γ-La2MoO6 and of hexagonal La15W8.5O48 to orthorhombic β-La2WO6. We compare the temperature dependences of conductivity for nanoparticulate and microcrystalline hexagonal phases and high-temperature phases differing in density. Above 600 °C, oxygen ion conduction prevails in the coarse-grained La18W10O57 (phase I, 6H polytype) ceramic. Low-density La15W8.5O48 and La15Mo8.5O48 (phase II, 5H polytype) nanoceramics exhibit predominantly electron conduction with an activation energy of 1.36 and 1.35 eV, respectively, in dry air.</description><subject>Ceramics</subject><subject>lanthanum molybdate</subject><subject>lanthanum tungstate</subject><subject>mechanochemical synthesis</subject><subject>Morphology</subject><subject>nanomaterials</subject><subject>oxygen ion conductivity</subject><subject>Particle size</subject><subject>Phase transitions</subject><subject>polytypism</subject><subject>Radiation</subject><subject>Single crystals</subject><subject>Solid solutions</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMFKAzEQhoMoWGovPkHAi4qryU6S3T14kKK20NpDFY8hm51tt7SbmmzB3nwH39AncbWizmWGn3--YX5Cjjm7BMjYFdZccSkVJHukw7NMRZwlsP9vPiS9EBasLQAOAB0ymG7rZo6hCtSVdICvZuZqs6QPpnbruQkYaFXT1kFHJp7Ax9v7eAL0dEyv6dhd0OczOt2GBlfhiByUZhmw99O75Onu9rE_iEaT-2H_ZhRZiFkTqSyPLaqyZDnmUPA0ySVYi2lquS0xtjLjeWJjidAKqoDCCGNUIdsNYImFLhnuuIUzC7321cr4rXam0t-C8zNtfFPZJerUpKiUFdbkqVDG5lmihChBoSy4FaJlnexYa-9eNhgavXAb374fdJyKjMUqBdm6zncu610IHsvfq5zpr-D1X_DwCd4Kc8Q</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Baldin, Egor</creator><creator>Lyskov, Nikolay</creator><creator>Vorobieva, Galina</creator><creator>Kolbanev, Igor</creator><creator>Karyagina, Olga</creator><creator>Stolbov, Dmitry</creator><creator>Voronkova, Valentina</creator><creator>Shlyakhtina, Anna</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8466-2455</orcidid><orcidid>https://orcid.org/0000-0001-8682-2328</orcidid><orcidid>https://orcid.org/0000-0002-3002-5677</orcidid></search><sort><creationdate>20230801</creationdate><title>Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems</title><author>Baldin, Egor ; Lyskov, Nikolay ; Vorobieva, Galina ; Kolbanev, Igor ; Karyagina, Olga ; Stolbov, Dmitry ; Voronkova, Valentina ; Shlyakhtina, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-69b2ce6ff0beb3d187b53cce88c1cfe2c591b7c25e3c1c6d3da4aa6d5ff0307c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ceramics</topic><topic>lanthanum molybdate</topic><topic>lanthanum tungstate</topic><topic>mechanochemical synthesis</topic><topic>Morphology</topic><topic>nanomaterials</topic><topic>oxygen ion conductivity</topic><topic>Particle size</topic><topic>Phase transitions</topic><topic>polytypism</topic><topic>Radiation</topic><topic>Single crystals</topic><topic>Solid solutions</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baldin, Egor</creatorcontrib><creatorcontrib>Lyskov, Nikolay</creatorcontrib><creatorcontrib>Vorobieva, Galina</creatorcontrib><creatorcontrib>Kolbanev, Igor</creatorcontrib><creatorcontrib>Karyagina, Olga</creatorcontrib><creatorcontrib>Stolbov, Dmitry</creatorcontrib><creatorcontrib>Voronkova, Valentina</creatorcontrib><creatorcontrib>Shlyakhtina, Anna</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldin, Egor</au><au>Lyskov, Nikolay</au><au>Vorobieva, Galina</au><au>Kolbanev, Igor</au><au>Karyagina, Olga</au><au>Stolbov, Dmitry</au><au>Voronkova, Valentina</au><au>Shlyakhtina, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems</atitle><jtitle>Energies (Basel)</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>16</volume><issue>15</issue><spage>5637</spage><pages>5637-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>We report a study of nanophases in the La2O3–MO3 (M = Mo, W) systems, which are known to contain a variety of good oxygen-ion and proton conductors. Mechanically activated La2O3 + MO3 (M = Mo, W) mixtures and the final ceramics have been characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) with Rietveld refinement. The microstructure of the materials has been examined by scanning electron microscopy (SEM), and their conductivity in dry and wet air has been determined using impedance spectroscopy. In both systems, the formation of hexagonal La15M8.5O48 (phase II, 5H polytype) (M = Mo, W) nanophases is observed for the composition 1:1, with exothermic peaks in the DSC curve in the range ~480–520 °C for La15Mo8.5O48 and ~685–760 °C for La15W8.5O48, respectively. The crystallite size of the nanocrystalline tungstates is ~40 nm, and that of the nanocrystalline molybdates is ~50 nm. At higher temperatures (~630–690 and ~1000 °C), we observe irreversible reconstructive phase transitions of hexagonal La15Mo8.5O48 to tetragonal γ-La2MoO6 and of hexagonal La15W8.5O48 to orthorhombic β-La2WO6. We compare the temperature dependences of conductivity for nanoparticulate and microcrystalline hexagonal phases and high-temperature phases differing in density. Above 600 °C, oxygen ion conduction prevails in the coarse-grained La18W10O57 (phase I, 6H polytype) ceramic. Low-density La15W8.5O48 and La15Mo8.5O48 (phase II, 5H polytype) nanoceramics exhibit predominantly electron conduction with an activation energy of 1.36 and 1.35 eV, respectively, in dry air.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en16155637</doi><orcidid>https://orcid.org/0000-0001-8466-2455</orcidid><orcidid>https://orcid.org/0000-0001-8682-2328</orcidid><orcidid>https://orcid.org/0000-0002-3002-5677</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2023-08, Vol.16 (15), p.5637 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8a8e66c4cab846acb97644f36e5d1c44 |
source | Publicly Available Content Database |
subjects | Ceramics lanthanum molybdate lanthanum tungstate mechanochemical synthesis Morphology nanomaterials oxygen ion conductivity Particle size Phase transitions polytypism Radiation Single crystals Solid solutions Spectrum analysis Temperature |
title | Synthesis of Hexagonal Nanophases in the La2O3–MO3 (M = Mo, W) Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Hexagonal%20Nanophases%20in%20the%20La2O3%E2%80%93MO3%20(M%20=%20Mo,%20W)%20Systems&rft.jtitle=Energies%20(Basel)&rft.au=Baldin,%20Egor&rft.date=2023-08-01&rft.volume=16&rft.issue=15&rft.spage=5637&rft.pages=5637-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en16155637&rft_dat=%3Cproquest_doaj_%3E2849026835%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-69b2ce6ff0beb3d187b53cce88c1cfe2c591b7c25e3c1c6d3da4aa6d5ff0307c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2849026835&rft_id=info:pmid/&rfr_iscdi=true |