Loading…

Preparation of Boron Nitride Nanoplatelets via Amino Acid Assisted Ball Milling: Towards Thermal Conductivity Application

Hexagonal boron nitride nanoplatelets (BNNPs) have attracted widespread attention due to their unique physical properties and their peeling from the base material. Mechanical exfoliation is a simple, scalable approach to produce single-layer or few-layer BNNPs. In this work, two amino acid grafted b...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2020-08, Vol.10 (9), p.1652
Main Authors: Yang, Nan, Ji, Haifeng, Jiang, Xiaoxia, Qu, Xiongwei, Zhang, Xiaojie, Zhang, Yue, Liu, Binyuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-33e9c27b6ae668725189f480775c28efae36cf2b61c1fab6f9121429ddf567243
cites cdi_FETCH-LOGICAL-c455t-33e9c27b6ae668725189f480775c28efae36cf2b61c1fab6f9121429ddf567243
container_end_page
container_issue 9
container_start_page 1652
container_title Nanomaterials (Basel, Switzerland)
container_volume 10
creator Yang, Nan
Ji, Haifeng
Jiang, Xiaoxia
Qu, Xiongwei
Zhang, Xiaojie
Zhang, Yue
Liu, Binyuan
description Hexagonal boron nitride nanoplatelets (BNNPs) have attracted widespread attention due to their unique physical properties and their peeling from the base material. Mechanical exfoliation is a simple, scalable approach to produce single-layer or few-layer BNNPs. In this work, two amino acid grafted boron nitride nanoplatelets, Lys@BNNP and Glu@BNNP, were successfully prepared via ball milling of h-BN with L-Lysine and L-Glutamic acid, respectively. It was found that the dispersion state of Lys@BNNP and Glu@BNNP in water had been effectively stabilized due to the introduction of amino acid moieties which contained a hydrophilic carboxyl group. PVA hydrogel composites with Lys@BNNP and Glu@BNNP as functional fillers were constructed and extensively studied. With 11.3 wt% Lys@BNNP incorporated, the thermal conductivity of Lys@BNNP/PVA hydrogel composite was up to 0.91 W m−1K−1, increased by 78%, comparing to the neat PVA hydrogel. Meanwhile, the mechanical and self-healing properties of the composites were simultaneously largely enhanced.
doi_str_mv 10.3390/nano10091652
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8aa910c147c14d54a84deacc120e3cab</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8aa910c147c14d54a84deacc120e3cab</doaj_id><sourcerecordid>2437405405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-33e9c27b6ae668725189f480775c28efae36cf2b61c1fab6f9121429ddf567243</originalsourceid><addsrcrecordid>eNpdkktvGyEQgFdVqyZKc-sPQOqlh7rlsSzQQ6WN1UekNO3BPaMxsA4Wu2wBu_K_L7GjKqnEiNHw6WNA0zSvCX7PmMIfJpgiwViRjtNnzTnFQi1apcjzR_lZc5nzFuN7jEnOXjZnjMqWdkqeN4efyc2QoPg4oTigq5hqcutL8tah26qfAxQXXMlo7wH1o58i6o23qM_Z5-IsuoIQ0Hcfgp82H9Eq_oFkM1rduTRCQMs42Z0pfu_LAfXzHLw53vaqeTFAyO7yYb9ofn35vFp-W9z8-Hq97G8WpuW8LBhzylCx7sB1nRSUE6mGVmIhuKHSDeBYZwa67oghA6y7QRFKWqqsHXgnaMsumuuT10bY6jn5EdJBR_D6WIhpoyEVb4LTEkARbEgraljegmytA2MIxY4ZWFfXp5Nr3q1HZ42bSoLwRPr0ZPJ3ehP3WnAulKRV8PZBkOLvnctFjz4bFwJMLu6yrv2KFvO6KvrmP3Qbd2mqX3WkqKwPFZV6d6JMijknN_xrhmB9PyL68Yiwv74Zrtc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437289127</pqid></control><display><type>article</type><title>Preparation of Boron Nitride Nanoplatelets via Amino Acid Assisted Ball Milling: Towards Thermal Conductivity Application</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yang, Nan ; Ji, Haifeng ; Jiang, Xiaoxia ; Qu, Xiongwei ; Zhang, Xiaojie ; Zhang, Yue ; Liu, Binyuan</creator><creatorcontrib>Yang, Nan ; Ji, Haifeng ; Jiang, Xiaoxia ; Qu, Xiongwei ; Zhang, Xiaojie ; Zhang, Yue ; Liu, Binyuan</creatorcontrib><description>Hexagonal boron nitride nanoplatelets (BNNPs) have attracted widespread attention due to their unique physical properties and their peeling from the base material. Mechanical exfoliation is a simple, scalable approach to produce single-layer or few-layer BNNPs. In this work, two amino acid grafted boron nitride nanoplatelets, Lys@BNNP and Glu@BNNP, were successfully prepared via ball milling of h-BN with L-Lysine and L-Glutamic acid, respectively. It was found that the dispersion state of Lys@BNNP and Glu@BNNP in water had been effectively stabilized due to the introduction of amino acid moieties which contained a hydrophilic carboxyl group. PVA hydrogel composites with Lys@BNNP and Glu@BNNP as functional fillers were constructed and extensively studied. With 11.3 wt% Lys@BNNP incorporated, the thermal conductivity of Lys@BNNP/PVA hydrogel composite was up to 0.91 W m−1K−1, increased by 78%, comparing to the neat PVA hydrogel. Meanwhile, the mechanical and self-healing properties of the composites were simultaneously largely enhanced.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano10091652</identifier><identifier>PMID: 32842698</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amino acids ; Aqueous solutions ; Ball milling ; Boron ; Boron nitride ; Carbon ; Carboxyl group ; Communication ; Composite materials ; Ethanol ; Experiments ; Fillers ; Fourier transforms ; Glutamic acid ; Graphene ; Heat conductivity ; Heat transfer ; hexagonal boron nitride nanoplatelets ; Hydrogels ; Lysine ; mechanical exfoliation ; Mechanical properties ; Physical properties ; Polymers ; Reagents ; Self healing materials ; self-healing ; Spectrum analysis ; Thermal conductivity</subject><ispartof>Nanomaterials (Basel, Switzerland), 2020-08, Vol.10 (9), p.1652</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-33e9c27b6ae668725189f480775c28efae36cf2b61c1fab6f9121429ddf567243</citedby><cites>FETCH-LOGICAL-c455t-33e9c27b6ae668725189f480775c28efae36cf2b61c1fab6f9121429ddf567243</cites><orcidid>0000-0002-8204-4845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2437289127/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2437289127?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids></links><search><creatorcontrib>Yang, Nan</creatorcontrib><creatorcontrib>Ji, Haifeng</creatorcontrib><creatorcontrib>Jiang, Xiaoxia</creatorcontrib><creatorcontrib>Qu, Xiongwei</creatorcontrib><creatorcontrib>Zhang, Xiaojie</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Liu, Binyuan</creatorcontrib><title>Preparation of Boron Nitride Nanoplatelets via Amino Acid Assisted Ball Milling: Towards Thermal Conductivity Application</title><title>Nanomaterials (Basel, Switzerland)</title><description>Hexagonal boron nitride nanoplatelets (BNNPs) have attracted widespread attention due to their unique physical properties and their peeling from the base material. Mechanical exfoliation is a simple, scalable approach to produce single-layer or few-layer BNNPs. In this work, two amino acid grafted boron nitride nanoplatelets, Lys@BNNP and Glu@BNNP, were successfully prepared via ball milling of h-BN with L-Lysine and L-Glutamic acid, respectively. It was found that the dispersion state of Lys@BNNP and Glu@BNNP in water had been effectively stabilized due to the introduction of amino acid moieties which contained a hydrophilic carboxyl group. PVA hydrogel composites with Lys@BNNP and Glu@BNNP as functional fillers were constructed and extensively studied. With 11.3 wt% Lys@BNNP incorporated, the thermal conductivity of Lys@BNNP/PVA hydrogel composite was up to 0.91 W m−1K−1, increased by 78%, comparing to the neat PVA hydrogel. Meanwhile, the mechanical and self-healing properties of the composites were simultaneously largely enhanced.</description><subject>Amino acids</subject><subject>Aqueous solutions</subject><subject>Ball milling</subject><subject>Boron</subject><subject>Boron nitride</subject><subject>Carbon</subject><subject>Carboxyl group</subject><subject>Communication</subject><subject>Composite materials</subject><subject>Ethanol</subject><subject>Experiments</subject><subject>Fillers</subject><subject>Fourier transforms</subject><subject>Glutamic acid</subject><subject>Graphene</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>hexagonal boron nitride nanoplatelets</subject><subject>Hydrogels</subject><subject>Lysine</subject><subject>mechanical exfoliation</subject><subject>Mechanical properties</subject><subject>Physical properties</subject><subject>Polymers</subject><subject>Reagents</subject><subject>Self healing materials</subject><subject>self-healing</subject><subject>Spectrum analysis</subject><subject>Thermal conductivity</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvGyEQgFdVqyZKc-sPQOqlh7rlsSzQQ6WN1UekNO3BPaMxsA4Wu2wBu_K_L7GjKqnEiNHw6WNA0zSvCX7PmMIfJpgiwViRjtNnzTnFQi1apcjzR_lZc5nzFuN7jEnOXjZnjMqWdkqeN4efyc2QoPg4oTigq5hqcutL8tah26qfAxQXXMlo7wH1o58i6o23qM_Z5-IsuoIQ0Hcfgp82H9Eq_oFkM1rduTRCQMs42Z0pfu_LAfXzHLw53vaqeTFAyO7yYb9ofn35vFp-W9z8-Hq97G8WpuW8LBhzylCx7sB1nRSUE6mGVmIhuKHSDeBYZwa67oghA6y7QRFKWqqsHXgnaMsumuuT10bY6jn5EdJBR_D6WIhpoyEVb4LTEkARbEgraljegmytA2MIxY4ZWFfXp5Nr3q1HZ42bSoLwRPr0ZPJ3ehP3WnAulKRV8PZBkOLvnctFjz4bFwJMLu6yrv2KFvO6KvrmP3Qbd2mqX3WkqKwPFZV6d6JMijknN_xrhmB9PyL68Yiwv74Zrtc</recordid><startdate>20200822</startdate><enddate>20200822</enddate><creator>Yang, Nan</creator><creator>Ji, Haifeng</creator><creator>Jiang, Xiaoxia</creator><creator>Qu, Xiongwei</creator><creator>Zhang, Xiaojie</creator><creator>Zhang, Yue</creator><creator>Liu, Binyuan</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8204-4845</orcidid></search><sort><creationdate>20200822</creationdate><title>Preparation of Boron Nitride Nanoplatelets via Amino Acid Assisted Ball Milling: Towards Thermal Conductivity Application</title><author>Yang, Nan ; Ji, Haifeng ; Jiang, Xiaoxia ; Qu, Xiongwei ; Zhang, Xiaojie ; Zhang, Yue ; Liu, Binyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-33e9c27b6ae668725189f480775c28efae36cf2b61c1fab6f9121429ddf567243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Aqueous solutions</topic><topic>Ball milling</topic><topic>Boron</topic><topic>Boron nitride</topic><topic>Carbon</topic><topic>Carboxyl group</topic><topic>Communication</topic><topic>Composite materials</topic><topic>Ethanol</topic><topic>Experiments</topic><topic>Fillers</topic><topic>Fourier transforms</topic><topic>Glutamic acid</topic><topic>Graphene</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>hexagonal boron nitride nanoplatelets</topic><topic>Hydrogels</topic><topic>Lysine</topic><topic>mechanical exfoliation</topic><topic>Mechanical properties</topic><topic>Physical properties</topic><topic>Polymers</topic><topic>Reagents</topic><topic>Self healing materials</topic><topic>self-healing</topic><topic>Spectrum analysis</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Nan</creatorcontrib><creatorcontrib>Ji, Haifeng</creatorcontrib><creatorcontrib>Jiang, Xiaoxia</creatorcontrib><creatorcontrib>Qu, Xiongwei</creatorcontrib><creatorcontrib>Zhang, Xiaojie</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Liu, Binyuan</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Nan</au><au>Ji, Haifeng</au><au>Jiang, Xiaoxia</au><au>Qu, Xiongwei</au><au>Zhang, Xiaojie</au><au>Zhang, Yue</au><au>Liu, Binyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of Boron Nitride Nanoplatelets via Amino Acid Assisted Ball Milling: Towards Thermal Conductivity Application</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2020-08-22</date><risdate>2020</risdate><volume>10</volume><issue>9</issue><spage>1652</spage><pages>1652-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Hexagonal boron nitride nanoplatelets (BNNPs) have attracted widespread attention due to their unique physical properties and their peeling from the base material. Mechanical exfoliation is a simple, scalable approach to produce single-layer or few-layer BNNPs. In this work, two amino acid grafted boron nitride nanoplatelets, Lys@BNNP and Glu@BNNP, were successfully prepared via ball milling of h-BN with L-Lysine and L-Glutamic acid, respectively. It was found that the dispersion state of Lys@BNNP and Glu@BNNP in water had been effectively stabilized due to the introduction of amino acid moieties which contained a hydrophilic carboxyl group. PVA hydrogel composites with Lys@BNNP and Glu@BNNP as functional fillers were constructed and extensively studied. With 11.3 wt% Lys@BNNP incorporated, the thermal conductivity of Lys@BNNP/PVA hydrogel composite was up to 0.91 W m−1K−1, increased by 78%, comparing to the neat PVA hydrogel. Meanwhile, the mechanical and self-healing properties of the composites were simultaneously largely enhanced.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32842698</pmid><doi>10.3390/nano10091652</doi><orcidid>https://orcid.org/0000-0002-8204-4845</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2020-08, Vol.10 (9), p.1652
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8aa910c147c14d54a84deacc120e3cab
source Publicly Available Content Database; PubMed Central
subjects Amino acids
Aqueous solutions
Ball milling
Boron
Boron nitride
Carbon
Carboxyl group
Communication
Composite materials
Ethanol
Experiments
Fillers
Fourier transforms
Glutamic acid
Graphene
Heat conductivity
Heat transfer
hexagonal boron nitride nanoplatelets
Hydrogels
Lysine
mechanical exfoliation
Mechanical properties
Physical properties
Polymers
Reagents
Self healing materials
self-healing
Spectrum analysis
Thermal conductivity
title Preparation of Boron Nitride Nanoplatelets via Amino Acid Assisted Ball Milling: Towards Thermal Conductivity Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20Boron%20Nitride%20Nanoplatelets%20via%20Amino%20Acid%20Assisted%20Ball%20Milling:%20Towards%20Thermal%20Conductivity%20Application&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Yang,%20Nan&rft.date=2020-08-22&rft.volume=10&rft.issue=9&rft.spage=1652&rft.pages=1652-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano10091652&rft_dat=%3Cproquest_doaj_%3E2437405405%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-33e9c27b6ae668725189f480775c28efae36cf2b61c1fab6f9121429ddf567243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2437289127&rft_id=info:pmid/32842698&rfr_iscdi=true