Loading…

Reconnection With Magnetic Flux Pileup at the Interface of Converging Jets at the Magnetopause

We report Magnetospheric Multiscale observations of reconnection in a thin current sheet at the interface of interlinked flux tubes carried by converging reconnection jets at Earth's magnetopause. The ion skin depth‐scale width of the interface current sheet and the non‐frozen‐in ions indicate...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2019-02, Vol.46 (4), p.1937-1946
Main Authors: Øieroset, M., Phan, T. D., Drake, J. F., Eastwood, J. P., Fuselier, S. A., Strangeway, R. J., Haggerty, C., Shay, M. A., Oka, M., Wang, S., Chen, L.‐J., Kacem, I., Lavraud, B., Angelopoulos, V., Burch, J. L., Torbert, R. B., Ergun, R. E., Khotyaintsev, Y., Lindqvist, P. A., Gershman, D. J., Giles, B. L., Pollock, C., Moore, T. E., Russell, C. T., Saito, Y., Avanov, L. A., Paterson, W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5696-a63469ab8b8d237eb7b84b266c68169c8f4fb6ad8cf991c7ce540e371c88be7e3
cites cdi_FETCH-LOGICAL-c5696-a63469ab8b8d237eb7b84b266c68169c8f4fb6ad8cf991c7ce540e371c88be7e3
container_end_page 1946
container_issue 4
container_start_page 1937
container_title Geophysical research letters
container_volume 46
creator Øieroset, M.
Phan, T. D.
Drake, J. F.
Eastwood, J. P.
Fuselier, S. A.
Strangeway, R. J.
Haggerty, C.
Shay, M. A.
Oka, M.
Wang, S.
Chen, L.‐J.
Kacem, I.
Lavraud, B.
Angelopoulos, V.
Burch, J. L.
Torbert, R. B.
Ergun, R. E.
Khotyaintsev, Y.
Lindqvist, P. A.
Gershman, D. J.
Giles, B. L.
Pollock, C.
Moore, T. E.
Russell, C. T.
Saito, Y.
Avanov, L. A.
Paterson, W.
description We report Magnetospheric Multiscale observations of reconnection in a thin current sheet at the interface of interlinked flux tubes carried by converging reconnection jets at Earth's magnetopause. The ion skin depth‐scale width of the interface current sheet and the non‐frozen‐in ions indicate that Magnetospheric Multiscale crossed the reconnection layer near the X‐line, through the ion diffusion region. Significant pileup of the reconnecting component of the magnetic field in this and three other events on approach to the interface current sheet was accompanied by an increase in magnetic shear and decrease in Δβ, leading to conditions favorable for reconnection at the interface current sheet. The pileup also led to enhanced available magnetic energy per particle and strong electron heating. The observations shed light on the evolution and energy release in 3‐D systems with multiple reconnection sites. Plain Language Summary The Earth and the solar wind magnetic fields interconnect through a process called magnetic reconnection. The newly reconnected magnetic field lines are strongly bent and accelerate particles, similar to a rubber band in a slingshot. In this paper we have used observations from NASA's Magnetospheric MultiScale spacecraft to investigate what happens when two of these slingshot‐like magnetic field lines move toward each other and get tangled up. We found that the two bent magnetic field lines tend to orient themselves perpendicular to each other as they become interlinked and stretched, similar to what rubber bands would do. This reorientation allows the interlinked magnetic fields to reconnect again, releasing part of the built‐up magnetic energy as strong electron heating. The results are important because they show how interlinked magnetic fields, which occur in many solar and astrophysics contexts, reconnect and produce enhanced electron heating, something that was not understood before. Key Points Magnetic flux pileup observed upstream of reconnecting current sheet at the interface of converging reconnection jets Magnetic flux pileup was accompanied by increase in magnetic shear and decrease in Δβ, leading to conditions favorable for reconnection Magnetic flux pileup leads to enhanced available magnetic energy per particle and strong electron heating
doi_str_mv 10.1029/2018GL080994
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8acb3b91ff1849e8850fc55ea164954c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8acb3b91ff1849e8850fc55ea164954c</doaj_id><sourcerecordid>2191401551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5696-a63469ab8b8d237eb7b84b266c68169c8f4fb6ad8cf991c7ce540e371c88be7e3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEkvhxg-wxA2x1BN_xD6uFrrdKghU8XHDsr3j3axCnNpJS_89oeGrF04eWc88mpm3KJ4DfQ201KclBbWpqaJa8wfFAjTnS0Vp9bBYUKqnuqzk4-JJzkdKKaMMFsXXS_Sx69APTezIl2Y4kHd23-HQeHLWjt_Jh6bFsSd2IMMBybYbMAXrkcRA1rG7xrRvuj25wCH_Zub-2Nsx49PiUbBtxme_3pPi09nbj-vzZf1-s12v6qUXUsullYxLbZ1yaleyCl3lFHellF4qkNqrwIOTdqd80Bp85VFwiqwCr5TDCtlJsZ29u2iPpk_NN5tuTbSNufuIaW9smnZq0SjrHXMaQgDFNSolaPBCoAXJteB-cr2aXfkG-9Hds71pPq_ubONomALQbMJfzvjBtvfY81Vtmi6PhjJZcS70NUzwixnuU7waMQ_mGMfUTacxJWjgFISAvxP4FHNOGP54gZqfSZt_k57wcsZvpqxu_8uazWUtlGCS_QDhYKhm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191401551</pqid></control><display><type>article</type><title>Reconnection With Magnetic Flux Pileup at the Interface of Converging Jets at the Magnetopause</title><source>Wiley Online Library AGU 2016</source><creator>Øieroset, M. ; Phan, T. D. ; Drake, J. F. ; Eastwood, J. P. ; Fuselier, S. A. ; Strangeway, R. J. ; Haggerty, C. ; Shay, M. A. ; Oka, M. ; Wang, S. ; Chen, L.‐J. ; Kacem, I. ; Lavraud, B. ; Angelopoulos, V. ; Burch, J. L. ; Torbert, R. B. ; Ergun, R. E. ; Khotyaintsev, Y. ; Lindqvist, P. A. ; Gershman, D. J. ; Giles, B. L. ; Pollock, C. ; Moore, T. E. ; Russell, C. T. ; Saito, Y. ; Avanov, L. A. ; Paterson, W.</creator><creatorcontrib>Øieroset, M. ; Phan, T. D. ; Drake, J. F. ; Eastwood, J. P. ; Fuselier, S. A. ; Strangeway, R. J. ; Haggerty, C. ; Shay, M. A. ; Oka, M. ; Wang, S. ; Chen, L.‐J. ; Kacem, I. ; Lavraud, B. ; Angelopoulos, V. ; Burch, J. L. ; Torbert, R. B. ; Ergun, R. E. ; Khotyaintsev, Y. ; Lindqvist, P. A. ; Gershman, D. J. ; Giles, B. L. ; Pollock, C. ; Moore, T. E. ; Russell, C. T. ; Saito, Y. ; Avanov, L. A. ; Paterson, W.</creatorcontrib><description>We report Magnetospheric Multiscale observations of reconnection in a thin current sheet at the interface of interlinked flux tubes carried by converging reconnection jets at Earth's magnetopause. The ion skin depth‐scale width of the interface current sheet and the non‐frozen‐in ions indicate that Magnetospheric Multiscale crossed the reconnection layer near the X‐line, through the ion diffusion region. Significant pileup of the reconnecting component of the magnetic field in this and three other events on approach to the interface current sheet was accompanied by an increase in magnetic shear and decrease in Δβ, leading to conditions favorable for reconnection at the interface current sheet. The pileup also led to enhanced available magnetic energy per particle and strong electron heating. The observations shed light on the evolution and energy release in 3‐D systems with multiple reconnection sites. Plain Language Summary The Earth and the solar wind magnetic fields interconnect through a process called magnetic reconnection. The newly reconnected magnetic field lines are strongly bent and accelerate particles, similar to a rubber band in a slingshot. In this paper we have used observations from NASA's Magnetospheric MultiScale spacecraft to investigate what happens when two of these slingshot‐like magnetic field lines move toward each other and get tangled up. We found that the two bent magnetic field lines tend to orient themselves perpendicular to each other as they become interlinked and stretched, similar to what rubber bands would do. This reorientation allows the interlinked magnetic fields to reconnect again, releasing part of the built‐up magnetic energy as strong electron heating. The results are important because they show how interlinked magnetic fields, which occur in many solar and astrophysics contexts, reconnect and produce enhanced electron heating, something that was not understood before. Key Points Magnetic flux pileup observed upstream of reconnecting current sheet at the interface of converging reconnection jets Magnetic flux pileup was accompanied by increase in magnetic shear and decrease in Δβ, leading to conditions favorable for reconnection Magnetic flux pileup leads to enhanced available magnetic energy per particle and strong electron heating</description><identifier>ISSN: 0094-8276</identifier><identifier>ISSN: 1944-8007</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2018GL080994</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Astrophysics ; Convergence ; Diffusion layers ; Earth ; Electron heating ; Electrons ; Energy ; Evolution ; Heating ; Ion diffusion ; Lines ; Magnetic field ; Magnetic fields ; Magnetic flux ; Magnetic reconnection ; Magnetism ; Magnetopause ; Magnetospheres ; Multiscale analysis ; Rubber ; Sciences of the Universe ; Skin ; Solar magnetic field ; Solar wind ; Solar wind magnetic fields ; Spacecraft ; Tubes</subject><ispartof>Geophysical research letters, 2019-02, Vol.46 (4), p.1937-1946</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5696-a63469ab8b8d237eb7b84b266c68169c8f4fb6ad8cf991c7ce540e371c88be7e3</citedby><cites>FETCH-LOGICAL-c5696-a63469ab8b8d237eb7b84b266c68169c8f4fb6ad8cf991c7ce540e371c88be7e3</cites><orcidid>0000-0001-5550-3113 ; 0000-0003-4501-0918 ; 0000-0001-7024-1561 ; 0000-0003-4733-8319 ; 0000-0002-4768-189X ; 0000-0003-2191-1025 ; 0000-0002-2160-7288 ; 0000-0002-3150-1137 ; 0000-0002-6924-9408 ; 0000-0001-9839-1828 ; 0000-0003-0452-8403 ; 0000-0003-3112-1561 ; 0000-0001-5617-9765 ; 0000-0001-8054-825X ; 0000-0001-6807-8494 ; 0000-0003-1304-4769 ; 0000-0001-9228-6605 ; 0000-0003-1861-4767 ; 0000-0002-6783-7759 ; 0000-0003-1639-8298 ; 0000-0001-9695-8149 ; 0000-0002-1354-3544 ; 0000-0002-9150-1841 ; 0000-0003-4101-7901 ; 0000-0003-2357-4851 ; 0000-0001-7188-8690 ; 0000-0002-3096-8579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GL080994$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GL080994$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03674459$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-381193$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Øieroset, M.</creatorcontrib><creatorcontrib>Phan, T. D.</creatorcontrib><creatorcontrib>Drake, J. F.</creatorcontrib><creatorcontrib>Eastwood, J. P.</creatorcontrib><creatorcontrib>Fuselier, S. A.</creatorcontrib><creatorcontrib>Strangeway, R. J.</creatorcontrib><creatorcontrib>Haggerty, C.</creatorcontrib><creatorcontrib>Shay, M. A.</creatorcontrib><creatorcontrib>Oka, M.</creatorcontrib><creatorcontrib>Wang, S.</creatorcontrib><creatorcontrib>Chen, L.‐J.</creatorcontrib><creatorcontrib>Kacem, I.</creatorcontrib><creatorcontrib>Lavraud, B.</creatorcontrib><creatorcontrib>Angelopoulos, V.</creatorcontrib><creatorcontrib>Burch, J. L.</creatorcontrib><creatorcontrib>Torbert, R. B.</creatorcontrib><creatorcontrib>Ergun, R. E.</creatorcontrib><creatorcontrib>Khotyaintsev, Y.</creatorcontrib><creatorcontrib>Lindqvist, P. A.</creatorcontrib><creatorcontrib>Gershman, D. J.</creatorcontrib><creatorcontrib>Giles, B. L.</creatorcontrib><creatorcontrib>Pollock, C.</creatorcontrib><creatorcontrib>Moore, T. E.</creatorcontrib><creatorcontrib>Russell, C. T.</creatorcontrib><creatorcontrib>Saito, Y.</creatorcontrib><creatorcontrib>Avanov, L. A.</creatorcontrib><creatorcontrib>Paterson, W.</creatorcontrib><title>Reconnection With Magnetic Flux Pileup at the Interface of Converging Jets at the Magnetopause</title><title>Geophysical research letters</title><description>We report Magnetospheric Multiscale observations of reconnection in a thin current sheet at the interface of interlinked flux tubes carried by converging reconnection jets at Earth's magnetopause. The ion skin depth‐scale width of the interface current sheet and the non‐frozen‐in ions indicate that Magnetospheric Multiscale crossed the reconnection layer near the X‐line, through the ion diffusion region. Significant pileup of the reconnecting component of the magnetic field in this and three other events on approach to the interface current sheet was accompanied by an increase in magnetic shear and decrease in Δβ, leading to conditions favorable for reconnection at the interface current sheet. The pileup also led to enhanced available magnetic energy per particle and strong electron heating. The observations shed light on the evolution and energy release in 3‐D systems with multiple reconnection sites. Plain Language Summary The Earth and the solar wind magnetic fields interconnect through a process called magnetic reconnection. The newly reconnected magnetic field lines are strongly bent and accelerate particles, similar to a rubber band in a slingshot. In this paper we have used observations from NASA's Magnetospheric MultiScale spacecraft to investigate what happens when two of these slingshot‐like magnetic field lines move toward each other and get tangled up. We found that the two bent magnetic field lines tend to orient themselves perpendicular to each other as they become interlinked and stretched, similar to what rubber bands would do. This reorientation allows the interlinked magnetic fields to reconnect again, releasing part of the built‐up magnetic energy as strong electron heating. The results are important because they show how interlinked magnetic fields, which occur in many solar and astrophysics contexts, reconnect and produce enhanced electron heating, something that was not understood before. Key Points Magnetic flux pileup observed upstream of reconnecting current sheet at the interface of converging reconnection jets Magnetic flux pileup was accompanied by increase in magnetic shear and decrease in Δβ, leading to conditions favorable for reconnection Magnetic flux pileup leads to enhanced available magnetic energy per particle and strong electron heating</description><subject>Astrophysics</subject><subject>Convergence</subject><subject>Diffusion layers</subject><subject>Earth</subject><subject>Electron heating</subject><subject>Electrons</subject><subject>Energy</subject><subject>Evolution</subject><subject>Heating</subject><subject>Ion diffusion</subject><subject>Lines</subject><subject>Magnetic field</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic reconnection</subject><subject>Magnetism</subject><subject>Magnetopause</subject><subject>Magnetospheres</subject><subject>Multiscale analysis</subject><subject>Rubber</subject><subject>Sciences of the Universe</subject><subject>Skin</subject><subject>Solar magnetic field</subject><subject>Solar wind</subject><subject>Solar wind magnetic fields</subject><subject>Spacecraft</subject><subject>Tubes</subject><issn>0094-8276</issn><issn>1944-8007</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEEkvhxg-wxA2x1BN_xD6uFrrdKghU8XHDsr3j3axCnNpJS_89oeGrF04eWc88mpm3KJ4DfQ201KclBbWpqaJa8wfFAjTnS0Vp9bBYUKqnuqzk4-JJzkdKKaMMFsXXS_Sx69APTezIl2Y4kHd23-HQeHLWjt_Jh6bFsSd2IMMBybYbMAXrkcRA1rG7xrRvuj25wCH_Zub-2Nsx49PiUbBtxme_3pPi09nbj-vzZf1-s12v6qUXUsullYxLbZ1yaleyCl3lFHellF4qkNqrwIOTdqd80Bp85VFwiqwCr5TDCtlJsZ29u2iPpk_NN5tuTbSNufuIaW9smnZq0SjrHXMaQgDFNSolaPBCoAXJteB-cr2aXfkG-9Hds71pPq_ubONomALQbMJfzvjBtvfY81Vtmi6PhjJZcS70NUzwixnuU7waMQ_mGMfUTacxJWjgFISAvxP4FHNOGP54gZqfSZt_k57wcsZvpqxu_8uazWUtlGCS_QDhYKhm</recordid><startdate>20190228</startdate><enddate>20190228</enddate><creator>Øieroset, M.</creator><creator>Phan, T. D.</creator><creator>Drake, J. F.</creator><creator>Eastwood, J. P.</creator><creator>Fuselier, S. A.</creator><creator>Strangeway, R. J.</creator><creator>Haggerty, C.</creator><creator>Shay, M. A.</creator><creator>Oka, M.</creator><creator>Wang, S.</creator><creator>Chen, L.‐J.</creator><creator>Kacem, I.</creator><creator>Lavraud, B.</creator><creator>Angelopoulos, V.</creator><creator>Burch, J. L.</creator><creator>Torbert, R. B.</creator><creator>Ergun, R. E.</creator><creator>Khotyaintsev, Y.</creator><creator>Lindqvist, P. A.</creator><creator>Gershman, D. J.</creator><creator>Giles, B. L.</creator><creator>Pollock, C.</creator><creator>Moore, T. E.</creator><creator>Russell, C. T.</creator><creator>Saito, Y.</creator><creator>Avanov, L. A.</creator><creator>Paterson, W.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5550-3113</orcidid><orcidid>https://orcid.org/0000-0003-4501-0918</orcidid><orcidid>https://orcid.org/0000-0001-7024-1561</orcidid><orcidid>https://orcid.org/0000-0003-4733-8319</orcidid><orcidid>https://orcid.org/0000-0002-4768-189X</orcidid><orcidid>https://orcid.org/0000-0003-2191-1025</orcidid><orcidid>https://orcid.org/0000-0002-2160-7288</orcidid><orcidid>https://orcid.org/0000-0002-3150-1137</orcidid><orcidid>https://orcid.org/0000-0002-6924-9408</orcidid><orcidid>https://orcid.org/0000-0001-9839-1828</orcidid><orcidid>https://orcid.org/0000-0003-0452-8403</orcidid><orcidid>https://orcid.org/0000-0003-3112-1561</orcidid><orcidid>https://orcid.org/0000-0001-5617-9765</orcidid><orcidid>https://orcid.org/0000-0001-8054-825X</orcidid><orcidid>https://orcid.org/0000-0001-6807-8494</orcidid><orcidid>https://orcid.org/0000-0003-1304-4769</orcidid><orcidid>https://orcid.org/0000-0001-9228-6605</orcidid><orcidid>https://orcid.org/0000-0003-1861-4767</orcidid><orcidid>https://orcid.org/0000-0002-6783-7759</orcidid><orcidid>https://orcid.org/0000-0003-1639-8298</orcidid><orcidid>https://orcid.org/0000-0001-9695-8149</orcidid><orcidid>https://orcid.org/0000-0002-1354-3544</orcidid><orcidid>https://orcid.org/0000-0002-9150-1841</orcidid><orcidid>https://orcid.org/0000-0003-4101-7901</orcidid><orcidid>https://orcid.org/0000-0003-2357-4851</orcidid><orcidid>https://orcid.org/0000-0001-7188-8690</orcidid><orcidid>https://orcid.org/0000-0002-3096-8579</orcidid></search><sort><creationdate>20190228</creationdate><title>Reconnection With Magnetic Flux Pileup at the Interface of Converging Jets at the Magnetopause</title><author>Øieroset, M. ; Phan, T. D. ; Drake, J. F. ; Eastwood, J. P. ; Fuselier, S. A. ; Strangeway, R. J. ; Haggerty, C. ; Shay, M. A. ; Oka, M. ; Wang, S. ; Chen, L.‐J. ; Kacem, I. ; Lavraud, B. ; Angelopoulos, V. ; Burch, J. L. ; Torbert, R. B. ; Ergun, R. E. ; Khotyaintsev, Y. ; Lindqvist, P. A. ; Gershman, D. J. ; Giles, B. L. ; Pollock, C. ; Moore, T. E. ; Russell, C. T. ; Saito, Y. ; Avanov, L. A. ; Paterson, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5696-a63469ab8b8d237eb7b84b266c68169c8f4fb6ad8cf991c7ce540e371c88be7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astrophysics</topic><topic>Convergence</topic><topic>Diffusion layers</topic><topic>Earth</topic><topic>Electron heating</topic><topic>Electrons</topic><topic>Energy</topic><topic>Evolution</topic><topic>Heating</topic><topic>Ion diffusion</topic><topic>Lines</topic><topic>Magnetic field</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic reconnection</topic><topic>Magnetism</topic><topic>Magnetopause</topic><topic>Magnetospheres</topic><topic>Multiscale analysis</topic><topic>Rubber</topic><topic>Sciences of the Universe</topic><topic>Skin</topic><topic>Solar magnetic field</topic><topic>Solar wind</topic><topic>Solar wind magnetic fields</topic><topic>Spacecraft</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Øieroset, M.</creatorcontrib><creatorcontrib>Phan, T. D.</creatorcontrib><creatorcontrib>Drake, J. F.</creatorcontrib><creatorcontrib>Eastwood, J. P.</creatorcontrib><creatorcontrib>Fuselier, S. A.</creatorcontrib><creatorcontrib>Strangeway, R. J.</creatorcontrib><creatorcontrib>Haggerty, C.</creatorcontrib><creatorcontrib>Shay, M. A.</creatorcontrib><creatorcontrib>Oka, M.</creatorcontrib><creatorcontrib>Wang, S.</creatorcontrib><creatorcontrib>Chen, L.‐J.</creatorcontrib><creatorcontrib>Kacem, I.</creatorcontrib><creatorcontrib>Lavraud, B.</creatorcontrib><creatorcontrib>Angelopoulos, V.</creatorcontrib><creatorcontrib>Burch, J. L.</creatorcontrib><creatorcontrib>Torbert, R. B.</creatorcontrib><creatorcontrib>Ergun, R. E.</creatorcontrib><creatorcontrib>Khotyaintsev, Y.</creatorcontrib><creatorcontrib>Lindqvist, P. A.</creatorcontrib><creatorcontrib>Gershman, D. J.</creatorcontrib><creatorcontrib>Giles, B. L.</creatorcontrib><creatorcontrib>Pollock, C.</creatorcontrib><creatorcontrib>Moore, T. E.</creatorcontrib><creatorcontrib>Russell, C. T.</creatorcontrib><creatorcontrib>Saito, Y.</creatorcontrib><creatorcontrib>Avanov, L. A.</creatorcontrib><creatorcontrib>Paterson, W.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><collection>Directory of Open Access Journals</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Øieroset, M.</au><au>Phan, T. D.</au><au>Drake, J. F.</au><au>Eastwood, J. P.</au><au>Fuselier, S. A.</au><au>Strangeway, R. J.</au><au>Haggerty, C.</au><au>Shay, M. A.</au><au>Oka, M.</au><au>Wang, S.</au><au>Chen, L.‐J.</au><au>Kacem, I.</au><au>Lavraud, B.</au><au>Angelopoulos, V.</au><au>Burch, J. L.</au><au>Torbert, R. B.</au><au>Ergun, R. E.</au><au>Khotyaintsev, Y.</au><au>Lindqvist, P. A.</au><au>Gershman, D. J.</au><au>Giles, B. L.</au><au>Pollock, C.</au><au>Moore, T. E.</au><au>Russell, C. T.</au><au>Saito, Y.</au><au>Avanov, L. A.</au><au>Paterson, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconnection With Magnetic Flux Pileup at the Interface of Converging Jets at the Magnetopause</atitle><jtitle>Geophysical research letters</jtitle><date>2019-02-28</date><risdate>2019</risdate><volume>46</volume><issue>4</issue><spage>1937</spage><epage>1946</epage><pages>1937-1946</pages><issn>0094-8276</issn><issn>1944-8007</issn><eissn>1944-8007</eissn><abstract>We report Magnetospheric Multiscale observations of reconnection in a thin current sheet at the interface of interlinked flux tubes carried by converging reconnection jets at Earth's magnetopause. The ion skin depth‐scale width of the interface current sheet and the non‐frozen‐in ions indicate that Magnetospheric Multiscale crossed the reconnection layer near the X‐line, through the ion diffusion region. Significant pileup of the reconnecting component of the magnetic field in this and three other events on approach to the interface current sheet was accompanied by an increase in magnetic shear and decrease in Δβ, leading to conditions favorable for reconnection at the interface current sheet. The pileup also led to enhanced available magnetic energy per particle and strong electron heating. The observations shed light on the evolution and energy release in 3‐D systems with multiple reconnection sites. Plain Language Summary The Earth and the solar wind magnetic fields interconnect through a process called magnetic reconnection. The newly reconnected magnetic field lines are strongly bent and accelerate particles, similar to a rubber band in a slingshot. In this paper we have used observations from NASA's Magnetospheric MultiScale spacecraft to investigate what happens when two of these slingshot‐like magnetic field lines move toward each other and get tangled up. We found that the two bent magnetic field lines tend to orient themselves perpendicular to each other as they become interlinked and stretched, similar to what rubber bands would do. This reorientation allows the interlinked magnetic fields to reconnect again, releasing part of the built‐up magnetic energy as strong electron heating. The results are important because they show how interlinked magnetic fields, which occur in many solar and astrophysics contexts, reconnect and produce enhanced electron heating, something that was not understood before. Key Points Magnetic flux pileup observed upstream of reconnecting current sheet at the interface of converging reconnection jets Magnetic flux pileup was accompanied by increase in magnetic shear and decrease in Δβ, leading to conditions favorable for reconnection Magnetic flux pileup leads to enhanced available magnetic energy per particle and strong electron heating</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018GL080994</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5550-3113</orcidid><orcidid>https://orcid.org/0000-0003-4501-0918</orcidid><orcidid>https://orcid.org/0000-0001-7024-1561</orcidid><orcidid>https://orcid.org/0000-0003-4733-8319</orcidid><orcidid>https://orcid.org/0000-0002-4768-189X</orcidid><orcidid>https://orcid.org/0000-0003-2191-1025</orcidid><orcidid>https://orcid.org/0000-0002-2160-7288</orcidid><orcidid>https://orcid.org/0000-0002-3150-1137</orcidid><orcidid>https://orcid.org/0000-0002-6924-9408</orcidid><orcidid>https://orcid.org/0000-0001-9839-1828</orcidid><orcidid>https://orcid.org/0000-0003-0452-8403</orcidid><orcidid>https://orcid.org/0000-0003-3112-1561</orcidid><orcidid>https://orcid.org/0000-0001-5617-9765</orcidid><orcidid>https://orcid.org/0000-0001-8054-825X</orcidid><orcidid>https://orcid.org/0000-0001-6807-8494</orcidid><orcidid>https://orcid.org/0000-0003-1304-4769</orcidid><orcidid>https://orcid.org/0000-0001-9228-6605</orcidid><orcidid>https://orcid.org/0000-0003-1861-4767</orcidid><orcidid>https://orcid.org/0000-0002-6783-7759</orcidid><orcidid>https://orcid.org/0000-0003-1639-8298</orcidid><orcidid>https://orcid.org/0000-0001-9695-8149</orcidid><orcidid>https://orcid.org/0000-0002-1354-3544</orcidid><orcidid>https://orcid.org/0000-0002-9150-1841</orcidid><orcidid>https://orcid.org/0000-0003-4101-7901</orcidid><orcidid>https://orcid.org/0000-0003-2357-4851</orcidid><orcidid>https://orcid.org/0000-0001-7188-8690</orcidid><orcidid>https://orcid.org/0000-0002-3096-8579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2019-02, Vol.46 (4), p.1937-1946
issn 0094-8276
1944-8007
1944-8007
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8acb3b91ff1849e8850fc55ea164954c
source Wiley Online Library AGU 2016
subjects Astrophysics
Convergence
Diffusion layers
Earth
Electron heating
Electrons
Energy
Evolution
Heating
Ion diffusion
Lines
Magnetic field
Magnetic fields
Magnetic flux
Magnetic reconnection
Magnetism
Magnetopause
Magnetospheres
Multiscale analysis
Rubber
Sciences of the Universe
Skin
Solar magnetic field
Solar wind
Solar wind magnetic fields
Spacecraft
Tubes
title Reconnection With Magnetic Flux Pileup at the Interface of Converging Jets at the Magnetopause
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconnection%20With%20Magnetic%20Flux%20Pileup%20at%20the%20Interface%20of%20Converging%20Jets%20at%20the%20Magnetopause&rft.jtitle=Geophysical%20research%20letters&rft.au=%C3%98ieroset,%20M.&rft.date=2019-02-28&rft.volume=46&rft.issue=4&rft.spage=1937&rft.epage=1946&rft.pages=1937-1946&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2018GL080994&rft_dat=%3Cproquest_doaj_%3E2191401551%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5696-a63469ab8b8d237eb7b84b266c68169c8f4fb6ad8cf991c7ce540e371c88be7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2191401551&rft_id=info:pmid/&rfr_iscdi=true