Loading…

Numerical Analysis of Energy Recovery of Hybrid Loader Actuators Based on Parameters Optimization

The conventional loader actuator hydraulic system suffers from the potential energy waste problem of the boom arm. This study proposes a hydraulic control method and control strategy for the energy recovery and regeneration of a hybrid loader arm. When the boom arm drops, the piston side of the boom...

Full description

Saved in:
Bibliographic Details
Published in:Actuators 2022-09, Vol.11 (9), p.260
Main Authors: Mu, Hongyun, Luo, Yanlei, Luo, Yu, Chen, Lunjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-a3a8081a0c24272af36bd84eafbc8a1e3a852946e7f58db2223a5d3c5b348aed3
cites cdi_FETCH-LOGICAL-c403t-a3a8081a0c24272af36bd84eafbc8a1e3a852946e7f58db2223a5d3c5b348aed3
container_end_page
container_issue 9
container_start_page 260
container_title Actuators
container_volume 11
creator Mu, Hongyun
Luo, Yanlei
Luo, Yu
Chen, Lunjun
description The conventional loader actuator hydraulic system suffers from the potential energy waste problem of the boom arm. This study proposes a hydraulic control method and control strategy for the energy recovery and regeneration of a hybrid loader arm. When the boom arm drops, the piston side of the boom cylinder charges the accumulator, and the system achieves energy recovery. When the boom arm rises, the accumulator releases hydraulic energy to drive the energy regeneration hydraulic motor to provide energy for the system, and the system achieves energy regeneration. The system’s principle analysis and the mathematical model are completed based on Boyle’s, Newton’s second law, and the flow continuity principle. The simulation model is established using AMESim 2D mechanical library, HCD library, and signal library. Under the typical working condition, 50-type wheel loader numerical simulation research is conducted, and the system cylinder motion characteristics, accumulator charging and discharging performance, system energy recovery, and regeneration performance are obtained. On this basis, energy recovery and regeneration efficiency are selected as optimization objectives. The optimal designs of accumulator and energy regeneration hydraulic motor parameters are carried out to obtain the influence law of accumulator and hydraulic motor parameters on system energy recovery and regeneration, and the energy-saving effect of the system is analyzed. The results show that the optimized parameters effectively improve the system energy recovery and regeneration efficiency and reduce engine fuel consumption. The system provides a reference for designing an energy recovery system and researching the energy-saving technology of loaders.
doi_str_mv 10.3390/act11090260
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8adc5d2708e4433785a707ce8a246989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741705873</galeid><doaj_id>oai_doaj_org_article_8adc5d2708e4433785a707ce8a246989</doaj_id><sourcerecordid>A741705873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-a3a8081a0c24272af36bd84eafbc8a1e3a852946e7f58db2223a5d3c5b348aed3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoKDWlO_QOCHoMTfa60RyfkC0xTSnIWs9KskfGuHEkObH995TiUzBxmeDPvMcxrmh-MXgrR0StwhTHaUd7SL80pp7pdUMPVyaf-W3Oe84bW6JgwVJw28Gs_YgoOtmQ5wXbOIZM4kNsJ03omf9DFN0zzAXqY-xQ8WUXwmMjSlT2UmDK5hoyexIn8hgQjFqzY066EMfyFEuL0vfk6wDbj-Uc9a17ubp9vHharp_vHm-Vq4SQVZQECDDUMqOOSaw6DaHtvJMLQOwMM61jxTraoB2V8zzkXoLxwqhfSAHpx1jwedX2Ejd2lMEKabYRg34GY1hZSCW6L1oB3ynNNDUophDYKNNUODXDZdqarWj-PWrsUX_eYi93Efar_yZZr1spWcXrYujxuraGKhmmIJYGr6XEMLk44hIovtWSaKqNFJVwcCS7FnBMO_89k1B48tJ88FP8Adj6NwA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716465209</pqid></control><display><type>article</type><title>Numerical Analysis of Energy Recovery of Hybrid Loader Actuators Based on Parameters Optimization</title><source>Publicly Available Content Database</source><creator>Mu, Hongyun ; Luo, Yanlei ; Luo, Yu ; Chen, Lunjun</creator><creatorcontrib>Mu, Hongyun ; Luo, Yanlei ; Luo, Yu ; Chen, Lunjun</creatorcontrib><description>The conventional loader actuator hydraulic system suffers from the potential energy waste problem of the boom arm. This study proposes a hydraulic control method and control strategy for the energy recovery and regeneration of a hybrid loader arm. When the boom arm drops, the piston side of the boom cylinder charges the accumulator, and the system achieves energy recovery. When the boom arm rises, the accumulator releases hydraulic energy to drive the energy regeneration hydraulic motor to provide energy for the system, and the system achieves energy regeneration. The system’s principle analysis and the mathematical model are completed based on Boyle’s, Newton’s second law, and the flow continuity principle. The simulation model is established using AMESim 2D mechanical library, HCD library, and signal library. Under the typical working condition, 50-type wheel loader numerical simulation research is conducted, and the system cylinder motion characteristics, accumulator charging and discharging performance, system energy recovery, and regeneration performance are obtained. On this basis, energy recovery and regeneration efficiency are selected as optimization objectives. The optimal designs of accumulator and energy regeneration hydraulic motor parameters are carried out to obtain the influence law of accumulator and hydraulic motor parameters on system energy recovery and regeneration, and the energy-saving effect of the system is analyzed. The results show that the optimized parameters effectively improve the system energy recovery and regeneration efficiency and reduce engine fuel consumption. The system provides a reference for designing an energy recovery system and researching the energy-saving technology of loaders.</description><identifier>ISSN: 2076-0825</identifier><identifier>EISSN: 2076-0825</identifier><identifier>DOI: 10.3390/act11090260</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>accumulator ; Accumulators ; Actuators ; AMESim simulation ; Analysis ; boom arm ; China ; Consumption ; Continuity (mathematics) ; Control methods ; Cylinders ; Efficiency ; Energy conservation ; Energy recovery ; energy recovery and regeneration ; Energy recovery systems ; Energy storage ; Excavating machinery ; Force and energy ; hybrid loader ; Hydraulic control ; Hydraulic equipment ; Hydraulic motors ; Hydraulics ; Industrial equipment ; Libraries ; Loaders ; Mathematical models ; Numerical analysis ; Optimization ; Parameters ; parameters optimization ; Potential energy ; Principles ; Regeneration ; Simulation ; Simulation methods ; Simulation models ; Valves ; Vehicles</subject><ispartof>Actuators, 2022-09, Vol.11 (9), p.260</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-a3a8081a0c24272af36bd84eafbc8a1e3a852946e7f58db2223a5d3c5b348aed3</citedby><cites>FETCH-LOGICAL-c403t-a3a8081a0c24272af36bd84eafbc8a1e3a852946e7f58db2223a5d3c5b348aed3</cites><orcidid>0000-0002-1727-7773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716465209/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716465209?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Mu, Hongyun</creatorcontrib><creatorcontrib>Luo, Yanlei</creatorcontrib><creatorcontrib>Luo, Yu</creatorcontrib><creatorcontrib>Chen, Lunjun</creatorcontrib><title>Numerical Analysis of Energy Recovery of Hybrid Loader Actuators Based on Parameters Optimization</title><title>Actuators</title><description>The conventional loader actuator hydraulic system suffers from the potential energy waste problem of the boom arm. This study proposes a hydraulic control method and control strategy for the energy recovery and regeneration of a hybrid loader arm. When the boom arm drops, the piston side of the boom cylinder charges the accumulator, and the system achieves energy recovery. When the boom arm rises, the accumulator releases hydraulic energy to drive the energy regeneration hydraulic motor to provide energy for the system, and the system achieves energy regeneration. The system’s principle analysis and the mathematical model are completed based on Boyle’s, Newton’s second law, and the flow continuity principle. The simulation model is established using AMESim 2D mechanical library, HCD library, and signal library. Under the typical working condition, 50-type wheel loader numerical simulation research is conducted, and the system cylinder motion characteristics, accumulator charging and discharging performance, system energy recovery, and regeneration performance are obtained. On this basis, energy recovery and regeneration efficiency are selected as optimization objectives. The optimal designs of accumulator and energy regeneration hydraulic motor parameters are carried out to obtain the influence law of accumulator and hydraulic motor parameters on system energy recovery and regeneration, and the energy-saving effect of the system is analyzed. The results show that the optimized parameters effectively improve the system energy recovery and regeneration efficiency and reduce engine fuel consumption. The system provides a reference for designing an energy recovery system and researching the energy-saving technology of loaders.</description><subject>accumulator</subject><subject>Accumulators</subject><subject>Actuators</subject><subject>AMESim simulation</subject><subject>Analysis</subject><subject>boom arm</subject><subject>China</subject><subject>Consumption</subject><subject>Continuity (mathematics)</subject><subject>Control methods</subject><subject>Cylinders</subject><subject>Efficiency</subject><subject>Energy conservation</subject><subject>Energy recovery</subject><subject>energy recovery and regeneration</subject><subject>Energy recovery systems</subject><subject>Energy storage</subject><subject>Excavating machinery</subject><subject>Force and energy</subject><subject>hybrid loader</subject><subject>Hydraulic control</subject><subject>Hydraulic equipment</subject><subject>Hydraulic motors</subject><subject>Hydraulics</subject><subject>Industrial equipment</subject><subject>Libraries</subject><subject>Loaders</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Parameters</subject><subject>parameters optimization</subject><subject>Potential energy</subject><subject>Principles</subject><subject>Regeneration</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Simulation models</subject><subject>Valves</subject><subject>Vehicles</subject><issn>2076-0825</issn><issn>2076-0825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoKDWlO_QOCHoMTfa60RyfkC0xTSnIWs9KskfGuHEkObH995TiUzBxmeDPvMcxrmh-MXgrR0StwhTHaUd7SL80pp7pdUMPVyaf-W3Oe84bW6JgwVJw28Gs_YgoOtmQ5wXbOIZM4kNsJ03omf9DFN0zzAXqY-xQ8WUXwmMjSlT2UmDK5hoyexIn8hgQjFqzY066EMfyFEuL0vfk6wDbj-Uc9a17ubp9vHharp_vHm-Vq4SQVZQECDDUMqOOSaw6DaHtvJMLQOwMM61jxTraoB2V8zzkXoLxwqhfSAHpx1jwedX2Ejd2lMEKabYRg34GY1hZSCW6L1oB3ynNNDUophDYKNNUODXDZdqarWj-PWrsUX_eYi93Efar_yZZr1spWcXrYujxuraGKhmmIJYGr6XEMLk44hIovtWSaKqNFJVwcCS7FnBMO_89k1B48tJ88FP8Adj6NwA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Mu, Hongyun</creator><creator>Luo, Yanlei</creator><creator>Luo, Yu</creator><creator>Chen, Lunjun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1727-7773</orcidid></search><sort><creationdate>20220901</creationdate><title>Numerical Analysis of Energy Recovery of Hybrid Loader Actuators Based on Parameters Optimization</title><author>Mu, Hongyun ; Luo, Yanlei ; Luo, Yu ; Chen, Lunjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-a3a8081a0c24272af36bd84eafbc8a1e3a852946e7f58db2223a5d3c5b348aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>accumulator</topic><topic>Accumulators</topic><topic>Actuators</topic><topic>AMESim simulation</topic><topic>Analysis</topic><topic>boom arm</topic><topic>China</topic><topic>Consumption</topic><topic>Continuity (mathematics)</topic><topic>Control methods</topic><topic>Cylinders</topic><topic>Efficiency</topic><topic>Energy conservation</topic><topic>Energy recovery</topic><topic>energy recovery and regeneration</topic><topic>Energy recovery systems</topic><topic>Energy storage</topic><topic>Excavating machinery</topic><topic>Force and energy</topic><topic>hybrid loader</topic><topic>Hydraulic control</topic><topic>Hydraulic equipment</topic><topic>Hydraulic motors</topic><topic>Hydraulics</topic><topic>Industrial equipment</topic><topic>Libraries</topic><topic>Loaders</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Parameters</topic><topic>parameters optimization</topic><topic>Potential energy</topic><topic>Principles</topic><topic>Regeneration</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Simulation models</topic><topic>Valves</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Hongyun</creatorcontrib><creatorcontrib>Luo, Yanlei</creatorcontrib><creatorcontrib>Luo, Yu</creatorcontrib><creatorcontrib>Chen, Lunjun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Actuators</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mu, Hongyun</au><au>Luo, Yanlei</au><au>Luo, Yu</au><au>Chen, Lunjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Analysis of Energy Recovery of Hybrid Loader Actuators Based on Parameters Optimization</atitle><jtitle>Actuators</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>11</volume><issue>9</issue><spage>260</spage><pages>260-</pages><issn>2076-0825</issn><eissn>2076-0825</eissn><abstract>The conventional loader actuator hydraulic system suffers from the potential energy waste problem of the boom arm. This study proposes a hydraulic control method and control strategy for the energy recovery and regeneration of a hybrid loader arm. When the boom arm drops, the piston side of the boom cylinder charges the accumulator, and the system achieves energy recovery. When the boom arm rises, the accumulator releases hydraulic energy to drive the energy regeneration hydraulic motor to provide energy for the system, and the system achieves energy regeneration. The system’s principle analysis and the mathematical model are completed based on Boyle’s, Newton’s second law, and the flow continuity principle. The simulation model is established using AMESim 2D mechanical library, HCD library, and signal library. Under the typical working condition, 50-type wheel loader numerical simulation research is conducted, and the system cylinder motion characteristics, accumulator charging and discharging performance, system energy recovery, and regeneration performance are obtained. On this basis, energy recovery and regeneration efficiency are selected as optimization objectives. The optimal designs of accumulator and energy regeneration hydraulic motor parameters are carried out to obtain the influence law of accumulator and hydraulic motor parameters on system energy recovery and regeneration, and the energy-saving effect of the system is analyzed. The results show that the optimized parameters effectively improve the system energy recovery and regeneration efficiency and reduce engine fuel consumption. The system provides a reference for designing an energy recovery system and researching the energy-saving technology of loaders.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/act11090260</doi><orcidid>https://orcid.org/0000-0002-1727-7773</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-0825
ispartof Actuators, 2022-09, Vol.11 (9), p.260
issn 2076-0825
2076-0825
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8adc5d2708e4433785a707ce8a246989
source Publicly Available Content Database
subjects accumulator
Accumulators
Actuators
AMESim simulation
Analysis
boom arm
China
Consumption
Continuity (mathematics)
Control methods
Cylinders
Efficiency
Energy conservation
Energy recovery
energy recovery and regeneration
Energy recovery systems
Energy storage
Excavating machinery
Force and energy
hybrid loader
Hydraulic control
Hydraulic equipment
Hydraulic motors
Hydraulics
Industrial equipment
Libraries
Loaders
Mathematical models
Numerical analysis
Optimization
Parameters
parameters optimization
Potential energy
Principles
Regeneration
Simulation
Simulation methods
Simulation models
Valves
Vehicles
title Numerical Analysis of Energy Recovery of Hybrid Loader Actuators Based on Parameters Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A49%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Analysis%20of%20Energy%20Recovery%20of%20Hybrid%20Loader%20Actuators%20Based%20on%20Parameters%20Optimization&rft.jtitle=Actuators&rft.au=Mu,%20Hongyun&rft.date=2022-09-01&rft.volume=11&rft.issue=9&rft.spage=260&rft.pages=260-&rft.issn=2076-0825&rft.eissn=2076-0825&rft_id=info:doi/10.3390/act11090260&rft_dat=%3Cgale_doaj_%3EA741705873%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-a3a8081a0c24272af36bd84eafbc8a1e3a852946e7f58db2223a5d3c5b348aed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716465209&rft_id=info:pmid/&rft_galeid=A741705873&rfr_iscdi=true