Loading…
Investigation of the 3D Printability of Covalently Cross-Linked Polypeptide-Based Hydrogels
The 3D printability of poly(l-lysine-ran-l-alanine) and four-arm poly(ethylene glycol) (P(KA)/4-PEG) hydrogels as 3D biomaterial inks was investigated using two approaches to develop P(KA)/4-PEG into 3D biomaterial inks. Only the “composite microgel” inks were 3D printable. In this approach, P(...
Saved in:
Published in: | ACS omega 2022-03, Vol.7 (9), p.7556-7571 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The 3D printability of poly(l-lysine-ran-l-alanine) and four-arm poly(ethylene glycol) (P(KA)/4-PEG) hydrogels as 3D biomaterial inks was investigated using two approaches to develop P(KA)/4-PEG into 3D biomaterial inks. Only the “composite microgel” inks were 3D printable. In this approach, P(KA)/4-PEG hydrogels were processed into microparticles and incorporated into a polymer solution to produce a composite microgel paste. Polymer solutions composed of either 4-arm PEG-acrylate (4-PEG-Ac), chitosan (CS), or poly(vinyl alcohol) (PVA) were used as the matrix material for the composite paste. The three respective composite microgel inks displayed good 3D printability in terms of extrudability, layer-stacking ability, solidification mechanism, and 3D print fidelity. The biocompatibility of P(KA)/4-PEG hydrogels was retained in the 3D printed scaffolds, and the biofunctionality of bioinert 4-PEG and PVA hydrogels was enhanced. CS-P(KA)/4-PEG inks demonstrated excellent 3D printability and proved highly successful in printing scaffolds with a narrow strand diameter (∼200 μm) and narrow strand spacing (∼500 μm) while the integrity of the vertical and horizontal pores was maintained. Using different needle IDs and strand spacing, certain physical properties of the hydrogels could be tuned, while the 3D printed porosity was kept constant. This included the surface area to volume ratio, the macropore sizes, and the mechanical properties. The scaffolds demonstrated adequate adhesion and spreading of NIH 3T3 fibroblasts seeded on the scaffold surfaces for 4 days. Consequently, the scaffolds were considered suitable for potential applications in wound healing, as well as other soft tissue engineering applications. Apart from the contribution to new 3D biomaterial inks, this work also presented a new and facile method of processing covalently cross-linked hydrogels into 3D printed scaffolds. This could potentially “unlock” the 3D printability of biofunctional hydrogels, which are generally excluded from 3D printing applications. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.1c05873 |