Loading…

Iron Regulation in Clostridioides difficile

The response to iron limitation of several bacteria is regulated by the ferric uptake regulator (Fur). The Fur-regulated transcriptional, translational and metabolic networks of the Gram-positive, pathogen were investigated by a combined RNA sequencing, proteomic, metabolomic and electron microscopy...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in microbiology 2018-12, Vol.9, p.3183-3183
Main Authors: Berges, Mareike, Michel, Annika-Marisa, Lassek, Christian, Nuss, Aaron M, Beckstette, Michael, Dersch, Petra, Riedel, Katharina, Sievers, Susanne, Becher, Dörte, Otto, Andreas, Maaß, Sandra, Rohde, Manfred, Eckweiler, Denitsa, Borrero-de Acuña, Jose M, Jahn, Martina, Neumann-Schaal, Meina, Jahn, Dieter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The response to iron limitation of several bacteria is regulated by the ferric uptake regulator (Fur). The Fur-regulated transcriptional, translational and metabolic networks of the Gram-positive, pathogen were investigated by a combined RNA sequencing, proteomic, metabolomic and electron microscopy approach. At high iron conditions (15 μM) the mutant displayed a growth deficiency compared to wild type cells. Several iron and siderophore transporter genes were induced by Fur during low iron (0.2 μM) conditions. The major adaptation to low iron conditions was observed for the central energy metabolism. Most ferredoxin-dependent amino acid fermentations were significantly down regulated ( ). The substrates of these pathways phenylalanine, leucine, glycine and some intermediates (phenylpyruvate, 2-oxo-isocaproate, 3-hydroxy-butyryl-CoA, crotonyl-CoA) accumulated, while end products like isocaproate and butyrate were found reduced. Flavodoxin ( ) formation and riboflavin biosynthesis ( ) were enhanced, most likely to replace the missing ferredoxins. Proline reductase ( ), the corresponding ion pumping RNF complex ( ) and the reaction product 5-aminovalerate were significantly enhanced. An ATP forming ATPase ( ) of the F F -type was induced while the formation of a ATP-consuming, proton-pumping V-type ATPase ( ) was decreased. The [Fe-S] enzyme-dependent pyruvate formate lyase ( ), formate dehydrogenase ( ) and hydrogenase ( ) branch of glucose utilization and glycogen biosynthesis (glg) were significantly reduced, leading to an accumulation of glucose and pyruvate. The formation of [Fe-S] enzyme carbon monoxide dehydrogenase ( ) was inhibited. The mutant showed an increased sensitivity to vancomycin and polymyxin B. An intensive remodeling of the cell wall was observed, Polyamine biosynthesis ( ) was induced leading to an accumulation of spermine, spermidine, and putrescine. The mutant lost most of its flagella and motility. Finally, the CRISPR/Cas and a prophage encoding operon were downregulated. Fur binding sites were found upstream of around 20 of the regulated genes. Overall, adaptation to low iron conditions in focused on an increase of iron import, a significant replacement of iron requiring metabolic pathways and the restructuring of the cell surface for protection during the complex adaptation phase and was only partly directly regulated by Fur.
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2018.03183