Loading…
Estimating the Optimal Location for the Storage of Pellet Surplus
This paper deals with the problem of managing the surplus that arises during the seasonal production of pellets, which will be sold in the period of increased demand. Dijkstra’s algorithm is used in issues connected with finding a new storage place with a view of the optimisation of the transport co...
Saved in:
Published in: | Energies (Basel) 2021-10, Vol.14 (20), p.6657 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with the problem of managing the surplus that arises during the seasonal production of pellets, which will be sold in the period of increased demand. Dijkstra’s algorithm is used in issues connected with finding a new storage place with a view of the optimisation of the transport costs of pellets produced by a company in 18 different towns in the Lubelskie Voivodeship in Poland. The most optimal location for the new pellet storage site has been determined, for which the total length of the traveled routes is the shortest, taking into account the actual shares of individual plants in the total production. The construction of the graph with the shortest paths was made on the basis of the existing network of available transport roads, and the nodes of the graph were their intersections. The most advantageous storage location of pellets was identified by the calculation the total transport cost using a minimum-cost tree of shortest paths. Based on the estimated transport assumptions, the lowest total cost of transport from all 18 plants was 3092.0 (km), which corresponds to an average distance to production plants of 89.7 km and 61.7 km to estimated selling distribution. The new storage point is suggested near the town of Piaski. Average cost of travel for all trees obtained for existing plant locations and subsequent distribution to points of sale was 4113.7 (km), while standard deviation 735.2 (km). Additionally, a relative increase in costs was estimated in the case of selecting other locations. Using spatial interpolation and geoprocessing tools, a map—showing the increase in pellet transport costs in relation to the most optimal solution—was developed. The constructed map allows for a better analysis of cost increases than a single point. It was stated that the increase in transport costs does not exceed 10% of lowest cost for 17.6% area of studied area. It was found that the most convenient area is shifted to the south of the voivodship and improperly adopted storage location can increase transport costs by up to 75%. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14206657 |