Loading…
Multiband Signal Receiver by Using an Optical Bandpass Filter Integrated with a Photodetector on a Chip
Photonic integration brings the promise of significant cost, power and space savings and propels the real applications of microwave photonic technology. In this paper, a multiband radio frequency (RF) signal simultaneous receiver using an optical bandpass filter (OBPF) integrated with a photodetecto...
Saved in:
Published in: | Micromachines (Basel) 2023-01, Vol.14 (2), p.331 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Photonic integration brings the promise of significant cost, power and space savings and propels the real applications of microwave photonic technology. In this paper, a multiband radio frequency (RF) signal simultaneous receiver using an optical bandpass filter (OBPF) integrated with a photodetector (PD) on a chip is proposed, which was experimentally demonstrated. The OBPF was composed of ring-assisted Mach-Zehnder interferometer with a periodical bandpass response featuring a box-like spectral shape. The OBPF was connected to a PD and then integrated onto a single silicon photonic chip. Phase-modulated multiband RF signals transmitted from different locations were inputted into the OBPF, by which one RF sideband was filtered out and the phase modulation to intensity modulation conversion was realized. The single sideband with carrier signals were then simultaneously detected by the PD. A proof-of-concept experiment with the silicon photonic integrated chip was implemented to simultaneously receive four channels of 8 GHz, 12 GHz, 14 GHz and 18 GHz in the X- and Ku-bands. The performance of the integrated microwave photonic multiband receiver-including the receiving sensitivity, the spurious free dynamic range, the gain and the noise figure across the whole operation frequency band-was characterized in detail. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi14020331 |