Loading…

Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search

In this work, we consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control. We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates γk(t) (v...

Full description

Saved in:
Bibliographic Details
Published in:Photonics 2023-02, Vol.10 (2), p.220
Main Authors: Petruhanov, Vadim N., Pechen, Alexander N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-50882ef066f66dda2f80428624c56cd6848fd89035db438755e5d7259ac4dd363
cites cdi_FETCH-LOGICAL-c421t-50882ef066f66dda2f80428624c56cd6848fd89035db438755e5d7259ac4dd363
container_end_page
container_issue 2
container_start_page 220
container_title Photonics
container_volume 10
creator Petruhanov, Vadim N.
Pechen, Alexander N.
description In this work, we consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control. We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates γk(t) (via time-dependent spectral density of incoherent photons) for generation of single-qubit gates for a two-level open quantum system which evolves according to the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equation with time-dependent coefficients determined by these coherent and incoherent controls. The control problem is formulated as minimization of the objective functional, which is the sum of Hilbert-Schmidt norms between four fixed basis states evolved under the GKSL master equation with controls and the same four states evolved under the ideal gate transformation. The exact expression for the gradient of the objective functional with respect to piecewise constant controls is obtained. Subsequent optimization is performed using a gradient type algorithm with an adaptive step size that leads to oscillating behaviour of the gradient norm vs. iterations. Optimal trajectories in the Bloch ball for various initial states are computed. A relation of quantum gate generation with optimization on complex Stiefel manifolds is discussed. We develop methodology and apply it here for unitary gates as a testing example. The next step is to apply the method for generation of non-unitary processes and to multi-level quantum systems.
doi_str_mv 10.3390/photonics10020220
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8b2219a02c814f648f3893a8dd22bb0b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A742893382</galeid><doaj_id>oai_doaj_org_article_8b2219a02c814f648f3893a8dd22bb0b</doaj_id><sourcerecordid>A742893382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-50882ef066f66dda2f80428624c56cd6848fd89035db438755e5d7259ac4dd363</originalsourceid><addsrcrecordid>eNplkU1rGzEQhpfSQkOSH9CboOdNtaOP1R6DaVyDIS1Jz0IrzcYytuRK2hr_-ypxUwrRHCTNvPPwDtM0nzp6w9hAvxw2scTgbe4oBQpA3zUXwChvZc_g_X_vj811zltaz9AxJfhFc_wxm1DmPVmagmSJAZMpPgbiA3k8xnaNv3FH7g8YyKvy4ZQL7jMZT2QRN5gwFGKCI6tgX7_fXwxlchfnWjj6siHLZJx_rj2gSXZz1XyYzC7j9d_7svl59_Vx8a1d3y9Xi9t1azl0pRVUKcCJSjlJ6ZyBSVEOSgK3QlonFVeTUwNlwo2cqV4IFK4HMRjLnWOSXTarM9dFs9WH5PcmnXQ0Xr8kYnrSJhVvd6jVCNANhoJVHZ9kJTM1MKOcAxhHOlbW5zPrkOKvGXPR2zinUO1r6PtBCqBMVdXNWfVkKtSHKZZkbA2He29jwMnX_G1fxxgYU1AbunODTTHnhNM_mx3Vz_vVb_bL_gD8X5nR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779652038</pqid></control><display><type>article</type><title>Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search</title><source>Publicly Available Content Database</source><source>EZB Free E-Journals</source><creator>Petruhanov, Vadim N. ; Pechen, Alexander N.</creator><creatorcontrib>Petruhanov, Vadim N. ; Pechen, Alexander N.</creatorcontrib><description>In this work, we consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control. We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates γk(t) (via time-dependent spectral density of incoherent photons) for generation of single-qubit gates for a two-level open quantum system which evolves according to the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equation with time-dependent coefficients determined by these coherent and incoherent controls. The control problem is formulated as minimization of the objective functional, which is the sum of Hilbert-Schmidt norms between four fixed basis states evolved under the GKSL master equation with controls and the same four states evolved under the ideal gate transformation. The exact expression for the gradient of the objective functional with respect to piecewise constant controls is obtained. Subsequent optimization is performed using a gradient type algorithm with an adaptive step size that leads to oscillating behaviour of the gradient norm vs. iterations. Optimal trajectories in the Bloch ball for various initial states are computed. A relation of quantum gate generation with optimization on complex Stiefel manifolds is discussed. We develop methodology and apply it here for unitary gates as a testing example. The next step is to apply the method for generation of non-unitary processes and to multi-level quantum systems.</description><identifier>ISSN: 2304-6732</identifier><identifier>EISSN: 2304-6732</identifier><identifier>DOI: 10.3390/photonics10020220</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive algorithms ; Coherence ; coherent control ; Control theory ; Hadamard gate ; Hamiltonian functions ; incoherent control ; Kinematics ; Manifolds (mathematics) ; Mathematical functions ; Norms ; open quantum systems ; Optimization ; Photons ; Quantum computing ; quantum control ; Quantum theory ; Qubits (quantum computing) ; single-qubit gate ; Time dependence ; Trajectory optimization</subject><ispartof>Photonics, 2023-02, Vol.10 (2), p.220</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-50882ef066f66dda2f80428624c56cd6848fd89035db438755e5d7259ac4dd363</citedby><cites>FETCH-LOGICAL-c421t-50882ef066f66dda2f80428624c56cd6848fd89035db438755e5d7259ac4dd363</cites><orcidid>0000-0003-3342-4785 ; 0000-0001-8290-8300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779652038/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779652038?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Petruhanov, Vadim N.</creatorcontrib><creatorcontrib>Pechen, Alexander N.</creatorcontrib><title>Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search</title><title>Photonics</title><description>In this work, we consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control. We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates γk(t) (via time-dependent spectral density of incoherent photons) for generation of single-qubit gates for a two-level open quantum system which evolves according to the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equation with time-dependent coefficients determined by these coherent and incoherent controls. The control problem is formulated as minimization of the objective functional, which is the sum of Hilbert-Schmidt norms between four fixed basis states evolved under the GKSL master equation with controls and the same four states evolved under the ideal gate transformation. The exact expression for the gradient of the objective functional with respect to piecewise constant controls is obtained. Subsequent optimization is performed using a gradient type algorithm with an adaptive step size that leads to oscillating behaviour of the gradient norm vs. iterations. Optimal trajectories in the Bloch ball for various initial states are computed. A relation of quantum gate generation with optimization on complex Stiefel manifolds is discussed. We develop methodology and apply it here for unitary gates as a testing example. The next step is to apply the method for generation of non-unitary processes and to multi-level quantum systems.</description><subject>Adaptive algorithms</subject><subject>Coherence</subject><subject>coherent control</subject><subject>Control theory</subject><subject>Hadamard gate</subject><subject>Hamiltonian functions</subject><subject>incoherent control</subject><subject>Kinematics</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical functions</subject><subject>Norms</subject><subject>open quantum systems</subject><subject>Optimization</subject><subject>Photons</subject><subject>Quantum computing</subject><subject>quantum control</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>single-qubit gate</subject><subject>Time dependence</subject><subject>Trajectory optimization</subject><issn>2304-6732</issn><issn>2304-6732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkU1rGzEQhpfSQkOSH9CboOdNtaOP1R6DaVyDIS1Jz0IrzcYytuRK2hr_-ypxUwrRHCTNvPPwDtM0nzp6w9hAvxw2scTgbe4oBQpA3zUXwChvZc_g_X_vj811zltaz9AxJfhFc_wxm1DmPVmagmSJAZMpPgbiA3k8xnaNv3FH7g8YyKvy4ZQL7jMZT2QRN5gwFGKCI6tgX7_fXwxlchfnWjj6siHLZJx_rj2gSXZz1XyYzC7j9d_7svl59_Vx8a1d3y9Xi9t1azl0pRVUKcCJSjlJ6ZyBSVEOSgK3QlonFVeTUwNlwo2cqV4IFK4HMRjLnWOSXTarM9dFs9WH5PcmnXQ0Xr8kYnrSJhVvd6jVCNANhoJVHZ9kJTM1MKOcAxhHOlbW5zPrkOKvGXPR2zinUO1r6PtBCqBMVdXNWfVkKtSHKZZkbA2He29jwMnX_G1fxxgYU1AbunODTTHnhNM_mx3Vz_vVb_bL_gD8X5nR</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Petruhanov, Vadim N.</creator><creator>Pechen, Alexander N.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3342-4785</orcidid><orcidid>https://orcid.org/0000-0001-8290-8300</orcidid></search><sort><creationdate>20230201</creationdate><title>Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search</title><author>Petruhanov, Vadim N. ; Pechen, Alexander N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-50882ef066f66dda2f80428624c56cd6848fd89035db438755e5d7259ac4dd363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Coherence</topic><topic>coherent control</topic><topic>Control theory</topic><topic>Hadamard gate</topic><topic>Hamiltonian functions</topic><topic>incoherent control</topic><topic>Kinematics</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical functions</topic><topic>Norms</topic><topic>open quantum systems</topic><topic>Optimization</topic><topic>Photons</topic><topic>Quantum computing</topic><topic>quantum control</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>single-qubit gate</topic><topic>Time dependence</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petruhanov, Vadim N.</creatorcontrib><creatorcontrib>Pechen, Alexander N.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petruhanov, Vadim N.</au><au>Pechen, Alexander N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search</atitle><jtitle>Photonics</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>10</volume><issue>2</issue><spage>220</spage><pages>220-</pages><issn>2304-6732</issn><eissn>2304-6732</eissn><abstract>In this work, we consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control. We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates γk(t) (via time-dependent spectral density of incoherent photons) for generation of single-qubit gates for a two-level open quantum system which evolves according to the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equation with time-dependent coefficients determined by these coherent and incoherent controls. The control problem is formulated as minimization of the objective functional, which is the sum of Hilbert-Schmidt norms between four fixed basis states evolved under the GKSL master equation with controls and the same four states evolved under the ideal gate transformation. The exact expression for the gradient of the objective functional with respect to piecewise constant controls is obtained. Subsequent optimization is performed using a gradient type algorithm with an adaptive step size that leads to oscillating behaviour of the gradient norm vs. iterations. Optimal trajectories in the Bloch ball for various initial states are computed. A relation of quantum gate generation with optimization on complex Stiefel manifolds is discussed. We develop methodology and apply it here for unitary gates as a testing example. The next step is to apply the method for generation of non-unitary processes and to multi-level quantum systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/photonics10020220</doi><orcidid>https://orcid.org/0000-0003-3342-4785</orcidid><orcidid>https://orcid.org/0000-0001-8290-8300</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2304-6732
ispartof Photonics, 2023-02, Vol.10 (2), p.220
issn 2304-6732
2304-6732
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8b2219a02c814f648f3893a8dd22bb0b
source Publicly Available Content Database; EZB Free E-Journals
subjects Adaptive algorithms
Coherence
coherent control
Control theory
Hadamard gate
Hamiltonian functions
incoherent control
Kinematics
Manifolds (mathematics)
Mathematical functions
Norms
open quantum systems
Optimization
Photons
Quantum computing
quantum control
Quantum theory
Qubits (quantum computing)
single-qubit gate
Time dependence
Trajectory optimization
title Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Gate%20Generation%20in%20Two-Level%20Open%20Quantum%20Systems%20by%20Coherent%20and%20Incoherent%20Photons%20Found%20with%20Gradient%20Search&rft.jtitle=Photonics&rft.au=Petruhanov,%20Vadim%20N.&rft.date=2023-02-01&rft.volume=10&rft.issue=2&rft.spage=220&rft.pages=220-&rft.issn=2304-6732&rft.eissn=2304-6732&rft_id=info:doi/10.3390/photonics10020220&rft_dat=%3Cgale_doaj_%3EA742893382%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-50882ef066f66dda2f80428624c56cd6848fd89035db438755e5d7259ac4dd363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779652038&rft_id=info:pmid/&rft_galeid=A742893382&rfr_iscdi=true