Loading…
Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search
In this work, we consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control. We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates γk(t) (v...
Saved in:
Published in: | Photonics 2023-02, Vol.10 (2), p.220 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-50882ef066f66dda2f80428624c56cd6848fd89035db438755e5d7259ac4dd363 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-50882ef066f66dda2f80428624c56cd6848fd89035db438755e5d7259ac4dd363 |
container_end_page | |
container_issue | 2 |
container_start_page | 220 |
container_title | Photonics |
container_volume | 10 |
creator | Petruhanov, Vadim N. Pechen, Alexander N. |
description | In this work, we consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control. We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates γk(t) (via time-dependent spectral density of incoherent photons) for generation of single-qubit gates for a two-level open quantum system which evolves according to the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equation with time-dependent coefficients determined by these coherent and incoherent controls. The control problem is formulated as minimization of the objective functional, which is the sum of Hilbert-Schmidt norms between four fixed basis states evolved under the GKSL master equation with controls and the same four states evolved under the ideal gate transformation. The exact expression for the gradient of the objective functional with respect to piecewise constant controls is obtained. Subsequent optimization is performed using a gradient type algorithm with an adaptive step size that leads to oscillating behaviour of the gradient norm vs. iterations. Optimal trajectories in the Bloch ball for various initial states are computed. A relation of quantum gate generation with optimization on complex Stiefel manifolds is discussed. We develop methodology and apply it here for unitary gates as a testing example. The next step is to apply the method for generation of non-unitary processes and to multi-level quantum systems. |
doi_str_mv | 10.3390/photonics10020220 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8b2219a02c814f648f3893a8dd22bb0b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A742893382</galeid><doaj_id>oai_doaj_org_article_8b2219a02c814f648f3893a8dd22bb0b</doaj_id><sourcerecordid>A742893382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-50882ef066f66dda2f80428624c56cd6848fd89035db438755e5d7259ac4dd363</originalsourceid><addsrcrecordid>eNplkU1rGzEQhpfSQkOSH9CboOdNtaOP1R6DaVyDIS1Jz0IrzcYytuRK2hr_-ypxUwrRHCTNvPPwDtM0nzp6w9hAvxw2scTgbe4oBQpA3zUXwChvZc_g_X_vj811zltaz9AxJfhFc_wxm1DmPVmagmSJAZMpPgbiA3k8xnaNv3FH7g8YyKvy4ZQL7jMZT2QRN5gwFGKCI6tgX7_fXwxlchfnWjj6siHLZJx_rj2gSXZz1XyYzC7j9d_7svl59_Vx8a1d3y9Xi9t1azl0pRVUKcCJSjlJ6ZyBSVEOSgK3QlonFVeTUwNlwo2cqV4IFK4HMRjLnWOSXTarM9dFs9WH5PcmnXQ0Xr8kYnrSJhVvd6jVCNANhoJVHZ9kJTM1MKOcAxhHOlbW5zPrkOKvGXPR2zinUO1r6PtBCqBMVdXNWfVkKtSHKZZkbA2He29jwMnX_G1fxxgYU1AbunODTTHnhNM_mx3Vz_vVb_bL_gD8X5nR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779652038</pqid></control><display><type>article</type><title>Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search</title><source>Publicly Available Content Database</source><source>EZB Free E-Journals</source><creator>Petruhanov, Vadim N. ; Pechen, Alexander N.</creator><creatorcontrib>Petruhanov, Vadim N. ; Pechen, Alexander N.</creatorcontrib><description>In this work, we consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control. We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates γk(t) (via time-dependent spectral density of incoherent photons) for generation of single-qubit gates for a two-level open quantum system which evolves according to the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equation with time-dependent coefficients determined by these coherent and incoherent controls. The control problem is formulated as minimization of the objective functional, which is the sum of Hilbert-Schmidt norms between four fixed basis states evolved under the GKSL master equation with controls and the same four states evolved under the ideal gate transformation. The exact expression for the gradient of the objective functional with respect to piecewise constant controls is obtained. Subsequent optimization is performed using a gradient type algorithm with an adaptive step size that leads to oscillating behaviour of the gradient norm vs. iterations. Optimal trajectories in the Bloch ball for various initial states are computed. A relation of quantum gate generation with optimization on complex Stiefel manifolds is discussed. We develop methodology and apply it here for unitary gates as a testing example. The next step is to apply the method for generation of non-unitary processes and to multi-level quantum systems.</description><identifier>ISSN: 2304-6732</identifier><identifier>EISSN: 2304-6732</identifier><identifier>DOI: 10.3390/photonics10020220</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive algorithms ; Coherence ; coherent control ; Control theory ; Hadamard gate ; Hamiltonian functions ; incoherent control ; Kinematics ; Manifolds (mathematics) ; Mathematical functions ; Norms ; open quantum systems ; Optimization ; Photons ; Quantum computing ; quantum control ; Quantum theory ; Qubits (quantum computing) ; single-qubit gate ; Time dependence ; Trajectory optimization</subject><ispartof>Photonics, 2023-02, Vol.10 (2), p.220</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-50882ef066f66dda2f80428624c56cd6848fd89035db438755e5d7259ac4dd363</citedby><cites>FETCH-LOGICAL-c421t-50882ef066f66dda2f80428624c56cd6848fd89035db438755e5d7259ac4dd363</cites><orcidid>0000-0003-3342-4785 ; 0000-0001-8290-8300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779652038/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779652038?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Petruhanov, Vadim N.</creatorcontrib><creatorcontrib>Pechen, Alexander N.</creatorcontrib><title>Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search</title><title>Photonics</title><description>In this work, we consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control. We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates γk(t) (via time-dependent spectral density of incoherent photons) for generation of single-qubit gates for a two-level open quantum system which evolves according to the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equation with time-dependent coefficients determined by these coherent and incoherent controls. The control problem is formulated as minimization of the objective functional, which is the sum of Hilbert-Schmidt norms between four fixed basis states evolved under the GKSL master equation with controls and the same four states evolved under the ideal gate transformation. The exact expression for the gradient of the objective functional with respect to piecewise constant controls is obtained. Subsequent optimization is performed using a gradient type algorithm with an adaptive step size that leads to oscillating behaviour of the gradient norm vs. iterations. Optimal trajectories in the Bloch ball for various initial states are computed. A relation of quantum gate generation with optimization on complex Stiefel manifolds is discussed. We develop methodology and apply it here for unitary gates as a testing example. The next step is to apply the method for generation of non-unitary processes and to multi-level quantum systems.</description><subject>Adaptive algorithms</subject><subject>Coherence</subject><subject>coherent control</subject><subject>Control theory</subject><subject>Hadamard gate</subject><subject>Hamiltonian functions</subject><subject>incoherent control</subject><subject>Kinematics</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical functions</subject><subject>Norms</subject><subject>open quantum systems</subject><subject>Optimization</subject><subject>Photons</subject><subject>Quantum computing</subject><subject>quantum control</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>single-qubit gate</subject><subject>Time dependence</subject><subject>Trajectory optimization</subject><issn>2304-6732</issn><issn>2304-6732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkU1rGzEQhpfSQkOSH9CboOdNtaOP1R6DaVyDIS1Jz0IrzcYytuRK2hr_-ypxUwrRHCTNvPPwDtM0nzp6w9hAvxw2scTgbe4oBQpA3zUXwChvZc_g_X_vj811zltaz9AxJfhFc_wxm1DmPVmagmSJAZMpPgbiA3k8xnaNv3FH7g8YyKvy4ZQL7jMZT2QRN5gwFGKCI6tgX7_fXwxlchfnWjj6siHLZJx_rj2gSXZz1XyYzC7j9d_7svl59_Vx8a1d3y9Xi9t1azl0pRVUKcCJSjlJ6ZyBSVEOSgK3QlonFVeTUwNlwo2cqV4IFK4HMRjLnWOSXTarM9dFs9WH5PcmnXQ0Xr8kYnrSJhVvd6jVCNANhoJVHZ9kJTM1MKOcAxhHOlbW5zPrkOKvGXPR2zinUO1r6PtBCqBMVdXNWfVkKtSHKZZkbA2He29jwMnX_G1fxxgYU1AbunODTTHnhNM_mx3Vz_vVb_bL_gD8X5nR</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Petruhanov, Vadim N.</creator><creator>Pechen, Alexander N.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3342-4785</orcidid><orcidid>https://orcid.org/0000-0001-8290-8300</orcidid></search><sort><creationdate>20230201</creationdate><title>Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search</title><author>Petruhanov, Vadim N. ; Pechen, Alexander N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-50882ef066f66dda2f80428624c56cd6848fd89035db438755e5d7259ac4dd363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Coherence</topic><topic>coherent control</topic><topic>Control theory</topic><topic>Hadamard gate</topic><topic>Hamiltonian functions</topic><topic>incoherent control</topic><topic>Kinematics</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical functions</topic><topic>Norms</topic><topic>open quantum systems</topic><topic>Optimization</topic><topic>Photons</topic><topic>Quantum computing</topic><topic>quantum control</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>single-qubit gate</topic><topic>Time dependence</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petruhanov, Vadim N.</creatorcontrib><creatorcontrib>Pechen, Alexander N.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petruhanov, Vadim N.</au><au>Pechen, Alexander N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search</atitle><jtitle>Photonics</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>10</volume><issue>2</issue><spage>220</spage><pages>220-</pages><issn>2304-6732</issn><eissn>2304-6732</eissn><abstract>In this work, we consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control. We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates γk(t) (via time-dependent spectral density of incoherent photons) for generation of single-qubit gates for a two-level open quantum system which evolves according to the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equation with time-dependent coefficients determined by these coherent and incoherent controls. The control problem is formulated as minimization of the objective functional, which is the sum of Hilbert-Schmidt norms between four fixed basis states evolved under the GKSL master equation with controls and the same four states evolved under the ideal gate transformation. The exact expression for the gradient of the objective functional with respect to piecewise constant controls is obtained. Subsequent optimization is performed using a gradient type algorithm with an adaptive step size that leads to oscillating behaviour of the gradient norm vs. iterations. Optimal trajectories in the Bloch ball for various initial states are computed. A relation of quantum gate generation with optimization on complex Stiefel manifolds is discussed. We develop methodology and apply it here for unitary gates as a testing example. The next step is to apply the method for generation of non-unitary processes and to multi-level quantum systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/photonics10020220</doi><orcidid>https://orcid.org/0000-0003-3342-4785</orcidid><orcidid>https://orcid.org/0000-0001-8290-8300</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2304-6732 |
ispartof | Photonics, 2023-02, Vol.10 (2), p.220 |
issn | 2304-6732 2304-6732 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8b2219a02c814f648f3893a8dd22bb0b |
source | Publicly Available Content Database; EZB Free E-Journals |
subjects | Adaptive algorithms Coherence coherent control Control theory Hadamard gate Hamiltonian functions incoherent control Kinematics Manifolds (mathematics) Mathematical functions Norms open quantum systems Optimization Photons Quantum computing quantum control Quantum theory Qubits (quantum computing) single-qubit gate Time dependence Trajectory optimization |
title | Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent and Incoherent Photons Found with Gradient Search |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Gate%20Generation%20in%20Two-Level%20Open%20Quantum%20Systems%20by%20Coherent%20and%20Incoherent%20Photons%20Found%20with%20Gradient%20Search&rft.jtitle=Photonics&rft.au=Petruhanov,%20Vadim%20N.&rft.date=2023-02-01&rft.volume=10&rft.issue=2&rft.spage=220&rft.pages=220-&rft.issn=2304-6732&rft.eissn=2304-6732&rft_id=info:doi/10.3390/photonics10020220&rft_dat=%3Cgale_doaj_%3EA742893382%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-50882ef066f66dda2f80428624c56cd6848fd89035db438755e5d7259ac4dd363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779652038&rft_id=info:pmid/&rft_galeid=A742893382&rfr_iscdi=true |