Loading…

Electroantennographic Responses of Cerambyx welensii Küster to Host-Related Volatiles

Wood-boring insects, such as Cerambyx welensii Küster, are involved in oak decline in Mediterranean areas. To advance our understanding of the olfactory perception of C. welensii, we recorded electroantennographic (EAG) responses from male and female antennae to 32 tree volatile organic compounds ty...

Full description

Saved in:
Bibliographic Details
Published in:Forests 2021-09, Vol.12 (9), p.1168
Main Authors: Sánchez-Osorio, Israel, Tapias, Raúl, Domínguez, Luis, López-Pantoja, Gloria, González, María del Mar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wood-boring insects, such as Cerambyx welensii Küster, are involved in oak decline in Mediterranean areas. To advance our understanding of the olfactory perception of C. welensii, we recorded electroantennographic (EAG) responses from male and female antennae to 32 tree volatile organic compounds typical of emissions from its main Quercus L. hosts, and also analysed the dose-dependent response. Cerambyx welensii antennae responded to 24 chemicals. Eight odorants elicited the highest EAG responses (normalized values of over 98%): 1,8-cineole, limonene-type blend, β-pinene, pinene-type blend, sabinene, α-pinene, turpentine and (E)-2-hexenal. Cerambyx welensii exhibits a broad sensitivity to common tree volatiles. The high EAG responses to both limonene- and pinene-type blends suggest the detection of specific blends of the main foliar monoterpenes emitted by Q. suber L. and Q. ilex L. (limonene, α- and β-pinene, sabinene and myrcene), which could influence the intraspecific host choice by C. welensii, and in particular, females may be able to detect oak trees with a limonene-type chemotype. In addition, C. welensii showed high antennal activity to some odorants that characterize emissions from non-host tree species (1,8-cineole, β-pinene, α-pinene, turpentine, δ3-carene and camphene). The results obtained may be applicable to optimize monitoring and mass-trapping programmes in an integrated pest management context.
ISSN:1999-4907
1999-4907
DOI:10.3390/f12091168