Loading…
Self-Healing of Active Distribution Networks by Accurate Fault Detection, Classification, and Location
The power system self-healing concept needs accurate and reliable fault detection, classification, and location (FDCL). This research proposes a novel and robust FDCL approach for distribution networks (DNs) in proportion to self-healing requirements. The proposed algorithm utilized a discrete wavel...
Saved in:
Published in: | Journal of electrical and computer engineering 2022-03, Vol.2022, p.1-14 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The power system self-healing concept needs accurate and reliable fault detection, classification, and location (FDCL). This research proposes a novel and robust FDCL approach for distribution networks (DNs) in proportion to self-healing requirements. The proposed algorithm utilized a discrete wavelet transform (DWT) to decompose the measured current and zero sequence current component of only one terminal (substation) to detect and classify all fault types with the identification of the faulted phase (s). The fault location is achieved by integrating DWT and support vector machine (SVM). The data for training were extracted using DWT and collected, and then SVM was trained to locate the faulted section. The simplicity of the applied approach, ignoring DG’s data that is merged into the system, reduced training data and time, ability to diagnose all fault types, and high accuracy are the most significant contributions. The proposed techniques are tested on IEEE 33 bus DN with two distributed generation (DG) units, which are simulated in MATLAB. The simulation results demonstrate that the proposed methods give more accurate and reliable results for diagnosing the faults (FDCL) of various fault sorts, DN size, and resistance levels. |
---|---|
ISSN: | 2090-0147 2090-0155 |
DOI: | 10.1155/2022/4593108 |