Loading…

Notch Signaling Molecules Activate TGF-β in Rat Mesangial Cells under High Glucose Conditions

The involvement of the Notch signaling pathway in the cellular differentiation of the mammalian kidney is established. Recently, the dysregulation of Notch signaling molecules has been identified in acute and chronic renal injuries, fibrosis models, and diabetic kidney biopsies. The canonical Notch...

Full description

Saved in:
Bibliographic Details
Published in:Journal of diabetes research 2013-01, Vol.2013 (2013), p.1-8
Main Authors: Gao, Chenlin, Liu, Li, Chen, Guo, Li, Xia, Li, Jia, Wan, Qin, Xu, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The involvement of the Notch signaling pathway in the cellular differentiation of the mammalian kidney is established. Recently, the dysregulation of Notch signaling molecules has been identified in acute and chronic renal injuries, fibrosis models, and diabetic kidney biopsies. The canonical Notch ligand , Jagged1, is upregulated in a transforming growth factor-beta- (TGF-β-) dependent manner during chronic kidney disease. TGF-β, a central mediator of renal fibrosis, also is a major contributor to the development of diabetic nephropathy. To explore the roles and possible mechanisms of Notch signaling molecules in the pathogenesis of diabetic nephropathy, we exposed cultured rat mesangial cells to a γ-secretase inhibitor (DAPT) or high glucose and measured the expression of Notch signaling molecules and the fibrosis index. Notch pathway-related molecules, TGF-β, and fibronectin increased with exposure to high glucose and decreased with DAPT treatment. Our results suggest that the Notch signaling pathway may precipitate diabetic nephropathy via TGF-β activation.
ISSN:2314-6745
2314-6753
DOI:10.1155/2013/979702