Loading…
The TNFR Wengen regulates the FGF pathway by an unconventional mechanism
Unveiling the molecular mechanisms of receptor activation has led to much understanding of development as well as the identification of important drug targets. We use the Drosophila tracheal system to study the activity of two families of widely used and conserved receptors, the TNFRs and the RTK-FG...
Saved in:
Published in: | Nature communications 2023-09, Vol.14 (1), p.5874-5874, Article 5874 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-7da130bf172f34b03677887458f114f664ce0c8d60c8b1bb6af98b05eca6752b3 |
container_end_page | 5874 |
container_issue | 1 |
container_start_page | 5874 |
container_title | Nature communications |
container_volume | 14 |
creator | Letizia, Annalisa Espinàs, Maria Lluisa Giannios, Panagiotis Llimargas, Marta |
description | Unveiling the molecular mechanisms of receptor activation has led to much understanding of development as well as the identification of important drug targets. We use the
Drosophila
tracheal system to study the activity of two families of widely used and conserved receptors, the TNFRs and the RTK-FGFRs. Breathless, an FGFR, controls the program of differentiation of the tracheal terminal cells in response to ligand activation. Here we identify a role for Wengen, a TNFR, in repressing the terminal cell program by regulating the MAPK pathway downstream of Breathless. We find that Wengen acts independently of both its canonical ligand and downstream pathway genes. Wengen does not stably localise at the membrane and is instead internalised—a trafficking that seems essential for activity. We show that Breathless and Wengen colocalise in intracellular vesicles and form a complex. Furthermore, Wengen regulates Breathless accumulation, possibly regulating Breathless trafficking and degradation. We propose that, in the tracheal context, Wengen interacts with Breathless to regulate its activity, and suggest that such unconventional mechanism, involving binding by TNFRs to unrelated proteins, may be a general strategy of TNFRs.
Mechanistic studies of receptor action have aided our understanding of developmental processes and facilitated drug development. Here they show that the TNFR-Wengen acts by forming a complex with the FGFR-Breathless, regulating its activity during cell differentiation in the developing respiratory system of Drosophila. |
doi_str_mv | 10.1038/s41467-023-41549-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8b3aed4a5b4449fdb2e19f139a84a12d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8b3aed4a5b4449fdb2e19f139a84a12d</doaj_id><sourcerecordid>2866962724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-7da130bf172f34b03677887458f114f664ce0c8d60c8b1bb6af98b05eca6752b3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotXSP8ApEhcuof6Y2M4JoYptK1UgoUUcrbHj7GaVxIudtNp_j7upgHLAB3vkeeb1eF5C3jL6gVGhLxMwkKqkXJTAKqhL8YKccwqsZIqLl3_FZ-QipT3NS9RMA7wmZ0IpUbGqPic3m50vNl_W34offtz6sYh-O_c4-VRMObO-XhcHnHYPeCzsscCxmEcXxns_Tl0YsS8G73Y4dml4Q1612Cd_8XSuyPf1583VTXn39fr26tNd6UDWU6kaZILaNjfWCrBUSKW0VlDpljFopQTnqdONzJtl1kpsa21p5R1KVXErVuR20W0C7s0hdgPGownYmdNFiFuDcepc7422An0DWFkAqNvGcs_qlokaNSDjTdb6uGgdZjv4xuVfReyfiT7PjN3ObMO9YbRiwPPsV-T9k0IMP2efJjN0yfm-x9GHORmupWYZhCqj7_5B92GOeYYnStaSKw6Z4gvlYkgp-vZ3N4yaR-PNYrzJj5uT8UbkIrEUpQxnF-Mf6f9U_QKiIq2a</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866962724</pqid></control><display><type>article</type><title>The TNFR Wengen regulates the FGF pathway by an unconventional mechanism</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Letizia, Annalisa ; Espinàs, Maria Lluisa ; Giannios, Panagiotis ; Llimargas, Marta</creator><creatorcontrib>Letizia, Annalisa ; Espinàs, Maria Lluisa ; Giannios, Panagiotis ; Llimargas, Marta</creatorcontrib><description>Unveiling the molecular mechanisms of receptor activation has led to much understanding of development as well as the identification of important drug targets. We use the
Drosophila
tracheal system to study the activity of two families of widely used and conserved receptors, the TNFRs and the RTK-FGFRs. Breathless, an FGFR, controls the program of differentiation of the tracheal terminal cells in response to ligand activation. Here we identify a role for Wengen, a TNFR, in repressing the terminal cell program by regulating the MAPK pathway downstream of Breathless. We find that Wengen acts independently of both its canonical ligand and downstream pathway genes. Wengen does not stably localise at the membrane and is instead internalised—a trafficking that seems essential for activity. We show that Breathless and Wengen colocalise in intracellular vesicles and form a complex. Furthermore, Wengen regulates Breathless accumulation, possibly regulating Breathless trafficking and degradation. We propose that, in the tracheal context, Wengen interacts with Breathless to regulate its activity, and suggest that such unconventional mechanism, involving binding by TNFRs to unrelated proteins, may be a general strategy of TNFRs.
Mechanistic studies of receptor action have aided our understanding of developmental processes and facilitated drug development. Here they show that the TNFR-Wengen acts by forming a complex with the FGFR-Breathless, regulating its activity during cell differentiation in the developing respiratory system of Drosophila.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-41549-3</identifier><identifier>PMID: 37735159</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/1 ; 13/51 ; 13/89 ; 14/1 ; 14/19 ; 14/34 ; 14/63 ; 38/1 ; 38/39 ; 631/136/142 ; 631/136/1660 ; 631/208/200 ; 631/80/313/1776 ; 631/80/86/2368 ; Cell differentiation ; Differentiation (biology) ; Drosophila ; Drug development ; Fibroblast growth factor receptors ; Fruit flies ; Humanities and Social Sciences ; Insects ; Ligands ; MAP kinase ; Molecular modelling ; multidisciplinary ; Receptor mechanisms ; Receptors ; Respiratory system ; Science ; Science (multidisciplinary) ; Therapeutic targets ; Tumor necrosis factor receptors</subject><ispartof>Nature communications, 2023-09, Vol.14 (1), p.5874-5874, Article 5874</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-7da130bf172f34b03677887458f114f664ce0c8d60c8b1bb6af98b05eca6752b3</cites><orcidid>0000-0002-1309-4398 ; 0000-0001-7225-3064 ; 0000-0003-3914-2228 ; 0000-0002-7881-1431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2866962724/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2866962724?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids></links><search><creatorcontrib>Letizia, Annalisa</creatorcontrib><creatorcontrib>Espinàs, Maria Lluisa</creatorcontrib><creatorcontrib>Giannios, Panagiotis</creatorcontrib><creatorcontrib>Llimargas, Marta</creatorcontrib><title>The TNFR Wengen regulates the FGF pathway by an unconventional mechanism</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Unveiling the molecular mechanisms of receptor activation has led to much understanding of development as well as the identification of important drug targets. We use the
Drosophila
tracheal system to study the activity of two families of widely used and conserved receptors, the TNFRs and the RTK-FGFRs. Breathless, an FGFR, controls the program of differentiation of the tracheal terminal cells in response to ligand activation. Here we identify a role for Wengen, a TNFR, in repressing the terminal cell program by regulating the MAPK pathway downstream of Breathless. We find that Wengen acts independently of both its canonical ligand and downstream pathway genes. Wengen does not stably localise at the membrane and is instead internalised—a trafficking that seems essential for activity. We show that Breathless and Wengen colocalise in intracellular vesicles and form a complex. Furthermore, Wengen regulates Breathless accumulation, possibly regulating Breathless trafficking and degradation. We propose that, in the tracheal context, Wengen interacts with Breathless to regulate its activity, and suggest that such unconventional mechanism, involving binding by TNFRs to unrelated proteins, may be a general strategy of TNFRs.
Mechanistic studies of receptor action have aided our understanding of developmental processes and facilitated drug development. Here they show that the TNFR-Wengen acts by forming a complex with the FGFR-Breathless, regulating its activity during cell differentiation in the developing respiratory system of Drosophila.</description><subject>13</subject><subject>13/1</subject><subject>13/51</subject><subject>13/89</subject><subject>14/1</subject><subject>14/19</subject><subject>14/34</subject><subject>14/63</subject><subject>38/1</subject><subject>38/39</subject><subject>631/136/142</subject><subject>631/136/1660</subject><subject>631/208/200</subject><subject>631/80/313/1776</subject><subject>631/80/86/2368</subject><subject>Cell differentiation</subject><subject>Differentiation (biology)</subject><subject>Drosophila</subject><subject>Drug development</subject><subject>Fibroblast growth factor receptors</subject><subject>Fruit flies</subject><subject>Humanities and Social Sciences</subject><subject>Insects</subject><subject>Ligands</subject><subject>MAP kinase</subject><subject>Molecular modelling</subject><subject>multidisciplinary</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Respiratory system</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Therapeutic targets</subject><subject>Tumor necrosis factor receptors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhi0EotXSP8ApEhcuof6Y2M4JoYptK1UgoUUcrbHj7GaVxIudtNp_j7upgHLAB3vkeeb1eF5C3jL6gVGhLxMwkKqkXJTAKqhL8YKccwqsZIqLl3_FZ-QipT3NS9RMA7wmZ0IpUbGqPic3m50vNl_W34offtz6sYh-O_c4-VRMObO-XhcHnHYPeCzsscCxmEcXxns_Tl0YsS8G73Y4dml4Q1612Cd_8XSuyPf1583VTXn39fr26tNd6UDWU6kaZILaNjfWCrBUSKW0VlDpljFopQTnqdONzJtl1kpsa21p5R1KVXErVuR20W0C7s0hdgPGownYmdNFiFuDcepc7422An0DWFkAqNvGcs_qlokaNSDjTdb6uGgdZjv4xuVfReyfiT7PjN3ObMO9YbRiwPPsV-T9k0IMP2efJjN0yfm-x9GHORmupWYZhCqj7_5B92GOeYYnStaSKw6Z4gvlYkgp-vZ3N4yaR-PNYrzJj5uT8UbkIrEUpQxnF-Mf6f9U_QKiIq2a</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>Letizia, Annalisa</creator><creator>Espinàs, Maria Lluisa</creator><creator>Giannios, Panagiotis</creator><creator>Llimargas, Marta</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1309-4398</orcidid><orcidid>https://orcid.org/0000-0001-7225-3064</orcidid><orcidid>https://orcid.org/0000-0003-3914-2228</orcidid><orcidid>https://orcid.org/0000-0002-7881-1431</orcidid></search><sort><creationdate>20230921</creationdate><title>The TNFR Wengen regulates the FGF pathway by an unconventional mechanism</title><author>Letizia, Annalisa ; Espinàs, Maria Lluisa ; Giannios, Panagiotis ; Llimargas, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-7da130bf172f34b03677887458f114f664ce0c8d60c8b1bb6af98b05eca6752b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>13</topic><topic>13/1</topic><topic>13/51</topic><topic>13/89</topic><topic>14/1</topic><topic>14/19</topic><topic>14/34</topic><topic>14/63</topic><topic>38/1</topic><topic>38/39</topic><topic>631/136/142</topic><topic>631/136/1660</topic><topic>631/208/200</topic><topic>631/80/313/1776</topic><topic>631/80/86/2368</topic><topic>Cell differentiation</topic><topic>Differentiation (biology)</topic><topic>Drosophila</topic><topic>Drug development</topic><topic>Fibroblast growth factor receptors</topic><topic>Fruit flies</topic><topic>Humanities and Social Sciences</topic><topic>Insects</topic><topic>Ligands</topic><topic>MAP kinase</topic><topic>Molecular modelling</topic><topic>multidisciplinary</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Respiratory system</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Therapeutic targets</topic><topic>Tumor necrosis factor receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Letizia, Annalisa</creatorcontrib><creatorcontrib>Espinàs, Maria Lluisa</creatorcontrib><creatorcontrib>Giannios, Panagiotis</creatorcontrib><creatorcontrib>Llimargas, Marta</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Letizia, Annalisa</au><au>Espinàs, Maria Lluisa</au><au>Giannios, Panagiotis</au><au>Llimargas, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The TNFR Wengen regulates the FGF pathway by an unconventional mechanism</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-09-21</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>5874</spage><epage>5874</epage><pages>5874-5874</pages><artnum>5874</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Unveiling the molecular mechanisms of receptor activation has led to much understanding of development as well as the identification of important drug targets. We use the
Drosophila
tracheal system to study the activity of two families of widely used and conserved receptors, the TNFRs and the RTK-FGFRs. Breathless, an FGFR, controls the program of differentiation of the tracheal terminal cells in response to ligand activation. Here we identify a role for Wengen, a TNFR, in repressing the terminal cell program by regulating the MAPK pathway downstream of Breathless. We find that Wengen acts independently of both its canonical ligand and downstream pathway genes. Wengen does not stably localise at the membrane and is instead internalised—a trafficking that seems essential for activity. We show that Breathless and Wengen colocalise in intracellular vesicles and form a complex. Furthermore, Wengen regulates Breathless accumulation, possibly regulating Breathless trafficking and degradation. We propose that, in the tracheal context, Wengen interacts with Breathless to regulate its activity, and suggest that such unconventional mechanism, involving binding by TNFRs to unrelated proteins, may be a general strategy of TNFRs.
Mechanistic studies of receptor action have aided our understanding of developmental processes and facilitated drug development. Here they show that the TNFR-Wengen acts by forming a complex with the FGFR-Breathless, regulating its activity during cell differentiation in the developing respiratory system of Drosophila.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37735159</pmid><doi>10.1038/s41467-023-41549-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1309-4398</orcidid><orcidid>https://orcid.org/0000-0001-7225-3064</orcidid><orcidid>https://orcid.org/0000-0003-3914-2228</orcidid><orcidid>https://orcid.org/0000-0002-7881-1431</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-09, Vol.14 (1), p.5874-5874, Article 5874 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8b3aed4a5b4449fdb2e19f139a84a12d |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13 13/1 13/51 13/89 14/1 14/19 14/34 14/63 38/1 38/39 631/136/142 631/136/1660 631/208/200 631/80/313/1776 631/80/86/2368 Cell differentiation Differentiation (biology) Drosophila Drug development Fibroblast growth factor receptors Fruit flies Humanities and Social Sciences Insects Ligands MAP kinase Molecular modelling multidisciplinary Receptor mechanisms Receptors Respiratory system Science Science (multidisciplinary) Therapeutic targets Tumor necrosis factor receptors |
title | The TNFR Wengen regulates the FGF pathway by an unconventional mechanism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T04%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20TNFR%20Wengen%20regulates%20the%20FGF%20pathway%20by%20an%20unconventional%20mechanism&rft.jtitle=Nature%20communications&rft.au=Letizia,%20Annalisa&rft.date=2023-09-21&rft.volume=14&rft.issue=1&rft.spage=5874&rft.epage=5874&rft.pages=5874-5874&rft.artnum=5874&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-41549-3&rft_dat=%3Cproquest_doaj_%3E2866962724%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-7da130bf172f34b03677887458f114f664ce0c8d60c8b1bb6af98b05eca6752b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2866962724&rft_id=info:pmid/37735159&rfr_iscdi=true |