Loading…
Machine learning-based prediction of on-state voltage for real-time health monitoring of IGBT
Real-time temperature monitoring of power semiconductors is a powerful tool for the predictive maintenance and lifetime prediction of power converters, and is typically performed by measuring temperature sensitive electrical parameters (TSEP). In this work, we demonstrate a machine learning-based me...
Saved in:
Published in: | Power electronic devices and components 2023-10, Vol.6, p.100049, Article 100049 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2729-a417d9f7b1cdc50bf4452d6ced9fb878ce2c64d9c64b4a559875520d17bbcf003 |
---|---|
cites | cdi_FETCH-LOGICAL-c2729-a417d9f7b1cdc50bf4452d6ced9fb878ce2c64d9c64b4a559875520d17bbcf003 |
container_end_page | |
container_issue | |
container_start_page | 100049 |
container_title | Power electronic devices and components |
container_volume | 6 |
creator | Thekemuriyil, Tanya Rohner, Jaspera Dominique Minamisawa, Renato Amaral |
description | Real-time temperature monitoring of power semiconductors is a powerful tool for the predictive maintenance and lifetime prediction of power converters, and is typically performed by measuring temperature sensitive electrical parameters (TSEP). In this work, we demonstrate a machine learning-based method to estimate the on-state voltage of a real converter prototype featuring variable load of electric vehicle (EV) and photovoltaic (PV) systems under different ambient temperatures induced in a climate chamber. The method provides for the first-time insights on the uncertainties and feature importance for the predictions, and is aimed to be industrial compatible by applying only methods that are well established in industry. The approach is further flexible to any converter system, independently of its specifications. We have used the Support Vector Machine, K-Nearest Neighbors, and Decision Tree algorithms to predict the on-state voltage as functions of the readily measured parameters of a converter. We show that for the PV case, the K-Nearest Neighbor method yields the lowest mean absolute error of about 0.75 % for prediction, while for EV, the K-Nearest Neighbor algorithm gives the lowest mean absolute error of 5 %. |
doi_str_mv | 10.1016/j.pedc.2023.100049 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8b52aeb781de41a6940064f916e3aa6b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8b52aeb781de41a6940064f916e3aa6b</doaj_id><sourcerecordid>oai_doaj_org_article_8b52aeb781de41a6940064f916e3aa6b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2729-a417d9f7b1cdc50bf4452d6ced9fb878ce2c64d9c64b4a559875520d17bbcf003</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKov4CkvsDXJZje7Ry1aC4oXPUqYJJM2Zbsp2SD49qZWxMvM8DPzDXyE3HC24Iy3t7vFAZ1dCCbqEjAm-zMyE0qJqlZMnv-bL8n1NO3Kiug4r0U9Ix8vYLdhRDogpDGMm8rAhI4eErpgc4gjjZ7GsZoyZKSfcciwQepjoglhqHLYI92WKW_pPo4hx1Qgx5v16v7tilx4GCa8_u1z8v748LZ8qp5fV-vl3XNlhRJ9BZIr13tluHW2YcZL2QjXWiyh6VRnUdhWur4UI6Fp-k41jWCOK2OsZ6yek_WJ6yLs9CGFPaQvHSHonyCmjYaUgx1Qd6YRgEZ13KHk0PaSsVb6nrdYA7SmsMSJZVOcpoT-j8eZPvrW5UPxrY--9cl3_Q1KQnS-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning-based prediction of on-state voltage for real-time health monitoring of IGBT</title><source>ScienceDirect (Online service)</source><creator>Thekemuriyil, Tanya ; Rohner, Jaspera Dominique ; Minamisawa, Renato Amaral</creator><creatorcontrib>Thekemuriyil, Tanya ; Rohner, Jaspera Dominique ; Minamisawa, Renato Amaral</creatorcontrib><description>Real-time temperature monitoring of power semiconductors is a powerful tool for the predictive maintenance and lifetime prediction of power converters, and is typically performed by measuring temperature sensitive electrical parameters (TSEP). In this work, we demonstrate a machine learning-based method to estimate the on-state voltage of a real converter prototype featuring variable load of electric vehicle (EV) and photovoltaic (PV) systems under different ambient temperatures induced in a climate chamber. The method provides for the first-time insights on the uncertainties and feature importance for the predictions, and is aimed to be industrial compatible by applying only methods that are well established in industry. The approach is further flexible to any converter system, independently of its specifications. We have used the Support Vector Machine, K-Nearest Neighbors, and Decision Tree algorithms to predict the on-state voltage as functions of the readily measured parameters of a converter. We show that for the PV case, the K-Nearest Neighbor method yields the lowest mean absolute error of about 0.75 % for prediction, while for EV, the K-Nearest Neighbor algorithm gives the lowest mean absolute error of 5 %.</description><identifier>ISSN: 2772-3704</identifier><identifier>EISSN: 2772-3704</identifier><identifier>DOI: 10.1016/j.pedc.2023.100049</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Condition monitoring ; Machine learning ; Power electronic converters ; Predictive maintenance ; Si IGBT</subject><ispartof>Power electronic devices and components, 2023-10, Vol.6, p.100049, Article 100049</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2729-a417d9f7b1cdc50bf4452d6ced9fb878ce2c64d9c64b4a559875520d17bbcf003</citedby><cites>FETCH-LOGICAL-c2729-a417d9f7b1cdc50bf4452d6ced9fb878ce2c64d9c64b4a559875520d17bbcf003</cites><orcidid>0000-0002-9416-9469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Thekemuriyil, Tanya</creatorcontrib><creatorcontrib>Rohner, Jaspera Dominique</creatorcontrib><creatorcontrib>Minamisawa, Renato Amaral</creatorcontrib><title>Machine learning-based prediction of on-state voltage for real-time health monitoring of IGBT</title><title>Power electronic devices and components</title><description>Real-time temperature monitoring of power semiconductors is a powerful tool for the predictive maintenance and lifetime prediction of power converters, and is typically performed by measuring temperature sensitive electrical parameters (TSEP). In this work, we demonstrate a machine learning-based method to estimate the on-state voltage of a real converter prototype featuring variable load of electric vehicle (EV) and photovoltaic (PV) systems under different ambient temperatures induced in a climate chamber. The method provides for the first-time insights on the uncertainties and feature importance for the predictions, and is aimed to be industrial compatible by applying only methods that are well established in industry. The approach is further flexible to any converter system, independently of its specifications. We have used the Support Vector Machine, K-Nearest Neighbors, and Decision Tree algorithms to predict the on-state voltage as functions of the readily measured parameters of a converter. We show that for the PV case, the K-Nearest Neighbor method yields the lowest mean absolute error of about 0.75 % for prediction, while for EV, the K-Nearest Neighbor algorithm gives the lowest mean absolute error of 5 %.</description><subject>Condition monitoring</subject><subject>Machine learning</subject><subject>Power electronic converters</subject><subject>Predictive maintenance</subject><subject>Si IGBT</subject><issn>2772-3704</issn><issn>2772-3704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkMFKAzEQhoMoWKov4CkvsDXJZje7Ry1aC4oXPUqYJJM2Zbsp2SD49qZWxMvM8DPzDXyE3HC24Iy3t7vFAZ1dCCbqEjAm-zMyE0qJqlZMnv-bL8n1NO3Kiug4r0U9Ix8vYLdhRDogpDGMm8rAhI4eErpgc4gjjZ7GsZoyZKSfcciwQepjoglhqHLYI92WKW_pPo4hx1Qgx5v16v7tilx4GCa8_u1z8v748LZ8qp5fV-vl3XNlhRJ9BZIr13tluHW2YcZL2QjXWiyh6VRnUdhWur4UI6Fp-k41jWCOK2OsZ6yek_WJ6yLs9CGFPaQvHSHonyCmjYaUgx1Qd6YRgEZ13KHk0PaSsVb6nrdYA7SmsMSJZVOcpoT-j8eZPvrW5UPxrY--9cl3_Q1KQnS-</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Thekemuriyil, Tanya</creator><creator>Rohner, Jaspera Dominique</creator><creator>Minamisawa, Renato Amaral</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9416-9469</orcidid></search><sort><creationdate>202310</creationdate><title>Machine learning-based prediction of on-state voltage for real-time health monitoring of IGBT</title><author>Thekemuriyil, Tanya ; Rohner, Jaspera Dominique ; Minamisawa, Renato Amaral</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2729-a417d9f7b1cdc50bf4452d6ced9fb878ce2c64d9c64b4a559875520d17bbcf003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Condition monitoring</topic><topic>Machine learning</topic><topic>Power electronic converters</topic><topic>Predictive maintenance</topic><topic>Si IGBT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thekemuriyil, Tanya</creatorcontrib><creatorcontrib>Rohner, Jaspera Dominique</creatorcontrib><creatorcontrib>Minamisawa, Renato Amaral</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Power electronic devices and components</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thekemuriyil, Tanya</au><au>Rohner, Jaspera Dominique</au><au>Minamisawa, Renato Amaral</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-based prediction of on-state voltage for real-time health monitoring of IGBT</atitle><jtitle>Power electronic devices and components</jtitle><date>2023-10</date><risdate>2023</risdate><volume>6</volume><spage>100049</spage><pages>100049-</pages><artnum>100049</artnum><issn>2772-3704</issn><eissn>2772-3704</eissn><abstract>Real-time temperature monitoring of power semiconductors is a powerful tool for the predictive maintenance and lifetime prediction of power converters, and is typically performed by measuring temperature sensitive electrical parameters (TSEP). In this work, we demonstrate a machine learning-based method to estimate the on-state voltage of a real converter prototype featuring variable load of electric vehicle (EV) and photovoltaic (PV) systems under different ambient temperatures induced in a climate chamber. The method provides for the first-time insights on the uncertainties and feature importance for the predictions, and is aimed to be industrial compatible by applying only methods that are well established in industry. The approach is further flexible to any converter system, independently of its specifications. We have used the Support Vector Machine, K-Nearest Neighbors, and Decision Tree algorithms to predict the on-state voltage as functions of the readily measured parameters of a converter. We show that for the PV case, the K-Nearest Neighbor method yields the lowest mean absolute error of about 0.75 % for prediction, while for EV, the K-Nearest Neighbor algorithm gives the lowest mean absolute error of 5 %.</abstract><pub>Elsevier</pub><doi>10.1016/j.pedc.2023.100049</doi><orcidid>https://orcid.org/0000-0002-9416-9469</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2772-3704 |
ispartof | Power electronic devices and components, 2023-10, Vol.6, p.100049, Article 100049 |
issn | 2772-3704 2772-3704 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8b52aeb781de41a6940064f916e3aa6b |
source | ScienceDirect (Online service) |
subjects | Condition monitoring Machine learning Power electronic converters Predictive maintenance Si IGBT |
title | Machine learning-based prediction of on-state voltage for real-time health monitoring of IGBT |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-based%20prediction%20of%20on-state%20voltage%20for%20real-time%20health%20monitoring%20of%20IGBT&rft.jtitle=Power%20electronic%20devices%20and%20components&rft.au=Thekemuriyil,%20Tanya&rft.date=2023-10&rft.volume=6&rft.spage=100049&rft.pages=100049-&rft.artnum=100049&rft.issn=2772-3704&rft.eissn=2772-3704&rft_id=info:doi/10.1016/j.pedc.2023.100049&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_8b52aeb781de41a6940064f916e3aa6b%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2729-a417d9f7b1cdc50bf4452d6ced9fb878ce2c64d9c64b4a559875520d17bbcf003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |