Loading…

Machine learning-based prediction of on-state voltage for real-time health monitoring of IGBT

Real-time temperature monitoring of power semiconductors is a powerful tool for the predictive maintenance and lifetime prediction of power converters, and is typically performed by measuring temperature sensitive electrical parameters (TSEP). In this work, we demonstrate a machine learning-based me...

Full description

Saved in:
Bibliographic Details
Published in:Power electronic devices and components 2023-10, Vol.6, p.100049, Article 100049
Main Authors: Thekemuriyil, Tanya, Rohner, Jaspera Dominique, Minamisawa, Renato Amaral
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2729-a417d9f7b1cdc50bf4452d6ced9fb878ce2c64d9c64b4a559875520d17bbcf003
cites cdi_FETCH-LOGICAL-c2729-a417d9f7b1cdc50bf4452d6ced9fb878ce2c64d9c64b4a559875520d17bbcf003
container_end_page
container_issue
container_start_page 100049
container_title Power electronic devices and components
container_volume 6
creator Thekemuriyil, Tanya
Rohner, Jaspera Dominique
Minamisawa, Renato Amaral
description Real-time temperature monitoring of power semiconductors is a powerful tool for the predictive maintenance and lifetime prediction of power converters, and is typically performed by measuring temperature sensitive electrical parameters (TSEP). In this work, we demonstrate a machine learning-based method to estimate the on-state voltage of a real converter prototype featuring variable load of electric vehicle (EV) and photovoltaic (PV) systems under different ambient temperatures induced in a climate chamber. The method provides for the first-time insights on the uncertainties and feature importance for the predictions, and is aimed to be industrial compatible by applying only methods that are well established in industry. The approach is further flexible to any converter system, independently of its specifications. We have used the Support Vector Machine, K-Nearest Neighbors, and Decision Tree algorithms to predict the on-state voltage as functions of the readily measured parameters of a converter. We show that for the PV case, the K-Nearest Neighbor method yields the lowest mean absolute error of about 0.75 % for prediction, while for EV, the K-Nearest Neighbor algorithm gives the lowest mean absolute error of 5 %.
doi_str_mv 10.1016/j.pedc.2023.100049
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8b52aeb781de41a6940064f916e3aa6b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8b52aeb781de41a6940064f916e3aa6b</doaj_id><sourcerecordid>oai_doaj_org_article_8b52aeb781de41a6940064f916e3aa6b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2729-a417d9f7b1cdc50bf4452d6ced9fb878ce2c64d9c64b4a559875520d17bbcf003</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKov4CkvsDXJZje7Ry1aC4oXPUqYJJM2Zbsp2SD49qZWxMvM8DPzDXyE3HC24Iy3t7vFAZ1dCCbqEjAm-zMyE0qJqlZMnv-bL8n1NO3Kiug4r0U9Ix8vYLdhRDogpDGMm8rAhI4eErpgc4gjjZ7GsZoyZKSfcciwQepjoglhqHLYI92WKW_pPo4hx1Qgx5v16v7tilx4GCa8_u1z8v748LZ8qp5fV-vl3XNlhRJ9BZIr13tluHW2YcZL2QjXWiyh6VRnUdhWur4UI6Fp-k41jWCOK2OsZ6yek_WJ6yLs9CGFPaQvHSHonyCmjYaUgx1Qd6YRgEZ13KHk0PaSsVb6nrdYA7SmsMSJZVOcpoT-j8eZPvrW5UPxrY--9cl3_Q1KQnS-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning-based prediction of on-state voltage for real-time health monitoring of IGBT</title><source>ScienceDirect (Online service)</source><creator>Thekemuriyil, Tanya ; Rohner, Jaspera Dominique ; Minamisawa, Renato Amaral</creator><creatorcontrib>Thekemuriyil, Tanya ; Rohner, Jaspera Dominique ; Minamisawa, Renato Amaral</creatorcontrib><description>Real-time temperature monitoring of power semiconductors is a powerful tool for the predictive maintenance and lifetime prediction of power converters, and is typically performed by measuring temperature sensitive electrical parameters (TSEP). In this work, we demonstrate a machine learning-based method to estimate the on-state voltage of a real converter prototype featuring variable load of electric vehicle (EV) and photovoltaic (PV) systems under different ambient temperatures induced in a climate chamber. The method provides for the first-time insights on the uncertainties and feature importance for the predictions, and is aimed to be industrial compatible by applying only methods that are well established in industry. The approach is further flexible to any converter system, independently of its specifications. We have used the Support Vector Machine, K-Nearest Neighbors, and Decision Tree algorithms to predict the on-state voltage as functions of the readily measured parameters of a converter. We show that for the PV case, the K-Nearest Neighbor method yields the lowest mean absolute error of about 0.75 % for prediction, while for EV, the K-Nearest Neighbor algorithm gives the lowest mean absolute error of 5 %.</description><identifier>ISSN: 2772-3704</identifier><identifier>EISSN: 2772-3704</identifier><identifier>DOI: 10.1016/j.pedc.2023.100049</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Condition monitoring ; Machine learning ; Power electronic converters ; Predictive maintenance ; Si IGBT</subject><ispartof>Power electronic devices and components, 2023-10, Vol.6, p.100049, Article 100049</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2729-a417d9f7b1cdc50bf4452d6ced9fb878ce2c64d9c64b4a559875520d17bbcf003</citedby><cites>FETCH-LOGICAL-c2729-a417d9f7b1cdc50bf4452d6ced9fb878ce2c64d9c64b4a559875520d17bbcf003</cites><orcidid>0000-0002-9416-9469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Thekemuriyil, Tanya</creatorcontrib><creatorcontrib>Rohner, Jaspera Dominique</creatorcontrib><creatorcontrib>Minamisawa, Renato Amaral</creatorcontrib><title>Machine learning-based prediction of on-state voltage for real-time health monitoring of IGBT</title><title>Power electronic devices and components</title><description>Real-time temperature monitoring of power semiconductors is a powerful tool for the predictive maintenance and lifetime prediction of power converters, and is typically performed by measuring temperature sensitive electrical parameters (TSEP). In this work, we demonstrate a machine learning-based method to estimate the on-state voltage of a real converter prototype featuring variable load of electric vehicle (EV) and photovoltaic (PV) systems under different ambient temperatures induced in a climate chamber. The method provides for the first-time insights on the uncertainties and feature importance for the predictions, and is aimed to be industrial compatible by applying only methods that are well established in industry. The approach is further flexible to any converter system, independently of its specifications. We have used the Support Vector Machine, K-Nearest Neighbors, and Decision Tree algorithms to predict the on-state voltage as functions of the readily measured parameters of a converter. We show that for the PV case, the K-Nearest Neighbor method yields the lowest mean absolute error of about 0.75 % for prediction, while for EV, the K-Nearest Neighbor algorithm gives the lowest mean absolute error of 5 %.</description><subject>Condition monitoring</subject><subject>Machine learning</subject><subject>Power electronic converters</subject><subject>Predictive maintenance</subject><subject>Si IGBT</subject><issn>2772-3704</issn><issn>2772-3704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkMFKAzEQhoMoWKov4CkvsDXJZje7Ry1aC4oXPUqYJJM2Zbsp2SD49qZWxMvM8DPzDXyE3HC24Iy3t7vFAZ1dCCbqEjAm-zMyE0qJqlZMnv-bL8n1NO3Kiug4r0U9Ix8vYLdhRDogpDGMm8rAhI4eErpgc4gjjZ7GsZoyZKSfcciwQepjoglhqHLYI92WKW_pPo4hx1Qgx5v16v7tilx4GCa8_u1z8v748LZ8qp5fV-vl3XNlhRJ9BZIr13tluHW2YcZL2QjXWiyh6VRnUdhWur4UI6Fp-k41jWCOK2OsZ6yek_WJ6yLs9CGFPaQvHSHonyCmjYaUgx1Qd6YRgEZ13KHk0PaSsVb6nrdYA7SmsMSJZVOcpoT-j8eZPvrW5UPxrY--9cl3_Q1KQnS-</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Thekemuriyil, Tanya</creator><creator>Rohner, Jaspera Dominique</creator><creator>Minamisawa, Renato Amaral</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9416-9469</orcidid></search><sort><creationdate>202310</creationdate><title>Machine learning-based prediction of on-state voltage for real-time health monitoring of IGBT</title><author>Thekemuriyil, Tanya ; Rohner, Jaspera Dominique ; Minamisawa, Renato Amaral</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2729-a417d9f7b1cdc50bf4452d6ced9fb878ce2c64d9c64b4a559875520d17bbcf003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Condition monitoring</topic><topic>Machine learning</topic><topic>Power electronic converters</topic><topic>Predictive maintenance</topic><topic>Si IGBT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thekemuriyil, Tanya</creatorcontrib><creatorcontrib>Rohner, Jaspera Dominique</creatorcontrib><creatorcontrib>Minamisawa, Renato Amaral</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Power electronic devices and components</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thekemuriyil, Tanya</au><au>Rohner, Jaspera Dominique</au><au>Minamisawa, Renato Amaral</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-based prediction of on-state voltage for real-time health monitoring of IGBT</atitle><jtitle>Power electronic devices and components</jtitle><date>2023-10</date><risdate>2023</risdate><volume>6</volume><spage>100049</spage><pages>100049-</pages><artnum>100049</artnum><issn>2772-3704</issn><eissn>2772-3704</eissn><abstract>Real-time temperature monitoring of power semiconductors is a powerful tool for the predictive maintenance and lifetime prediction of power converters, and is typically performed by measuring temperature sensitive electrical parameters (TSEP). In this work, we demonstrate a machine learning-based method to estimate the on-state voltage of a real converter prototype featuring variable load of electric vehicle (EV) and photovoltaic (PV) systems under different ambient temperatures induced in a climate chamber. The method provides for the first-time insights on the uncertainties and feature importance for the predictions, and is aimed to be industrial compatible by applying only methods that are well established in industry. The approach is further flexible to any converter system, independently of its specifications. We have used the Support Vector Machine, K-Nearest Neighbors, and Decision Tree algorithms to predict the on-state voltage as functions of the readily measured parameters of a converter. We show that for the PV case, the K-Nearest Neighbor method yields the lowest mean absolute error of about 0.75 % for prediction, while for EV, the K-Nearest Neighbor algorithm gives the lowest mean absolute error of 5 %.</abstract><pub>Elsevier</pub><doi>10.1016/j.pedc.2023.100049</doi><orcidid>https://orcid.org/0000-0002-9416-9469</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2772-3704
ispartof Power electronic devices and components, 2023-10, Vol.6, p.100049, Article 100049
issn 2772-3704
2772-3704
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8b52aeb781de41a6940064f916e3aa6b
source ScienceDirect (Online service)
subjects Condition monitoring
Machine learning
Power electronic converters
Predictive maintenance
Si IGBT
title Machine learning-based prediction of on-state voltage for real-time health monitoring of IGBT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-based%20prediction%20of%20on-state%20voltage%20for%20real-time%20health%20monitoring%20of%20IGBT&rft.jtitle=Power%20electronic%20devices%20and%20components&rft.au=Thekemuriyil,%20Tanya&rft.date=2023-10&rft.volume=6&rft.spage=100049&rft.pages=100049-&rft.artnum=100049&rft.issn=2772-3704&rft.eissn=2772-3704&rft_id=info:doi/10.1016/j.pedc.2023.100049&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_8b52aeb781de41a6940064f916e3aa6b%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2729-a417d9f7b1cdc50bf4452d6ced9fb878ce2c64d9c64b4a559875520d17bbcf003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true