Loading…
Improved Continuum Joint Configuration Estimation Using a Linear Combination of Length Measurements and Optimization of Sensor Placement
This paper presents methods for placing length sensors on a soft continuum robot joint as well as a novel configuration estimation method that drastically minimizes configuration estimation error. The methods utilized for placing sensors along the length of the joint include a single joint length se...
Saved in:
Published in: | Frontiers in robotics and AI 2021-04, Vol.8, p.637301-637301 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-20cee35670ccce97036585d2cdfc590989f13aefbc80f00eefecb5ab045554813 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-20cee35670ccce97036585d2cdfc590989f13aefbc80f00eefecb5ab045554813 |
container_end_page | 637301 |
container_issue | |
container_start_page | 637301 |
container_title | Frontiers in robotics and AI |
container_volume | 8 |
creator | Rupert, Levi Duggan, Timothy Killpack, Marc D |
description | This paper presents methods for placing length sensors on a soft continuum robot joint as well as a novel configuration estimation method that drastically minimizes configuration estimation error. The methods utilized for placing sensors along the length of the joint include a single joint length sensor, sensors lined end-to-end, sensors that overlap according to a heuristic, and sensors that are placed by an optimization that we describe in this paper. The methods of configuration estimation include directly relating sensor length to a segment of the joint's angle, using an equal weighting of overlapping sensors that cover a joint segment, and using a weighted linear combination of all sensors on the continuum joint. The weights for the linear combination method are determined using robust linear regression. Using a kinematic simulation we show that placing three or more overlapping sensors and estimating the configuration with a linear combination of sensors resulted in a median error of 0.026% of the max range of motion or less. This is over a 500 times improvement as compared to using a single sensor to estimate the joint configuration. This error was computed across 80 simulated robots of different lengths and ranges of motion. We also found that the fully optimized sensor placement performed only marginally better than the placement of sensors according to the heuristic. This suggests that the use of a linear combination of sensors, with weights found using linear regression is more important than the placement of the overlapping sensors. Further, using the heuristic significantly simplifies the application of these techniques when designing for hardware. |
doi_str_mv | 10.3389/frobt.2021.637301 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8b62e2174e9b4e6eb956a26b115b0407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8b62e2174e9b4e6eb956a26b115b0407</doaj_id><sourcerecordid>2515069710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-20cee35670ccce97036585d2cdfc590989f13aefbc80f00eefecb5ab045554813</originalsourceid><addsrcrecordid>eNpVksFu1DAQhiMEolXpA3BBOXLZxXZsJ74goVULixYVCXq2bGecukrsxXYqwRPw2Hg3ZdWePPb883lG81fVW4zWTdOJDzYGndcEEbzmTdsg_KI6J0TwlcCUvnwSn1WXKd0jhDDraNO2r6uzAuCCCHZe_d1O-xgeoK83wWfn53mqvwbn8-Fu3TBHlV3w9VXKblrC2-T8UKt65zyoWHSTdn5JBVvvwA_5rv4GKs0RJvA51cr39c2-ANyfk-4H-BRi_X1U5qh6U72yakxw-XheVLfXVz83X1a7m8_bzafdylDO8oogA9Aw3iJjDIgWNZx1rCemt4YJJDphcaPAatMhixCABaOZ0ogyxmiHm4tqu3D7oO7lPpap4m8ZlJPHhxAHqWJ2ZgTZaU6A4JaC0BQ4aMG4IlxjzAoPtYX1cWHtZz1Bb8oYUY3PoM8z3t3JITzIDtEWY1oA7x8BMfyaIWU5uWRgHJWHMCdJGGaIixajIsWL1MSQUgR7-gYjeTCEPBpCHgwhF0OUmndP-ztV_F9_8w_1nLYR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515069710</pqid></control><display><type>article</type><title>Improved Continuum Joint Configuration Estimation Using a Linear Combination of Length Measurements and Optimization of Sensor Placement</title><source>PubMed Central</source><creator>Rupert, Levi ; Duggan, Timothy ; Killpack, Marc D</creator><creatorcontrib>Rupert, Levi ; Duggan, Timothy ; Killpack, Marc D</creatorcontrib><description>This paper presents methods for placing length sensors on a soft continuum robot joint as well as a novel configuration estimation method that drastically minimizes configuration estimation error. The methods utilized for placing sensors along the length of the joint include a single joint length sensor, sensors lined end-to-end, sensors that overlap according to a heuristic, and sensors that are placed by an optimization that we describe in this paper. The methods of configuration estimation include directly relating sensor length to a segment of the joint's angle, using an equal weighting of overlapping sensors that cover a joint segment, and using a weighted linear combination of all sensors on the continuum joint. The weights for the linear combination method are determined using robust linear regression. Using a kinematic simulation we show that placing three or more overlapping sensors and estimating the configuration with a linear combination of sensors resulted in a median error of 0.026% of the max range of motion or less. This is over a 500 times improvement as compared to using a single sensor to estimate the joint configuration. This error was computed across 80 simulated robots of different lengths and ranges of motion. We also found that the fully optimized sensor placement performed only marginally better than the placement of sensors according to the heuristic. This suggests that the use of a linear combination of sensors, with weights found using linear regression is more important than the placement of the overlapping sensors. Further, using the heuristic significantly simplifies the application of these techniques when designing for hardware.</description><identifier>ISSN: 2296-9144</identifier><identifier>EISSN: 2296-9144</identifier><identifier>DOI: 10.3389/frobt.2021.637301</identifier><identifier>PMID: 33869295</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>continuum joints ; estimation ; optimization ; proprioception ; Robotics and AI ; soft robotics</subject><ispartof>Frontiers in robotics and AI, 2021-04, Vol.8, p.637301-637301</ispartof><rights>Copyright © 2021 Rupert, Duggan and Killpack.</rights><rights>Copyright © 2021 Rupert, Duggan and Killpack. 2021 Rupert, Duggan and Killpack</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-20cee35670ccce97036585d2cdfc590989f13aefbc80f00eefecb5ab045554813</citedby><cites>FETCH-LOGICAL-c465t-20cee35670ccce97036585d2cdfc590989f13aefbc80f00eefecb5ab045554813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047114/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047114/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33869295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rupert, Levi</creatorcontrib><creatorcontrib>Duggan, Timothy</creatorcontrib><creatorcontrib>Killpack, Marc D</creatorcontrib><title>Improved Continuum Joint Configuration Estimation Using a Linear Combination of Length Measurements and Optimization of Sensor Placement</title><title>Frontiers in robotics and AI</title><addtitle>Front Robot AI</addtitle><description>This paper presents methods for placing length sensors on a soft continuum robot joint as well as a novel configuration estimation method that drastically minimizes configuration estimation error. The methods utilized for placing sensors along the length of the joint include a single joint length sensor, sensors lined end-to-end, sensors that overlap according to a heuristic, and sensors that are placed by an optimization that we describe in this paper. The methods of configuration estimation include directly relating sensor length to a segment of the joint's angle, using an equal weighting of overlapping sensors that cover a joint segment, and using a weighted linear combination of all sensors on the continuum joint. The weights for the linear combination method are determined using robust linear regression. Using a kinematic simulation we show that placing three or more overlapping sensors and estimating the configuration with a linear combination of sensors resulted in a median error of 0.026% of the max range of motion or less. This is over a 500 times improvement as compared to using a single sensor to estimate the joint configuration. This error was computed across 80 simulated robots of different lengths and ranges of motion. We also found that the fully optimized sensor placement performed only marginally better than the placement of sensors according to the heuristic. This suggests that the use of a linear combination of sensors, with weights found using linear regression is more important than the placement of the overlapping sensors. Further, using the heuristic significantly simplifies the application of these techniques when designing for hardware.</description><subject>continuum joints</subject><subject>estimation</subject><subject>optimization</subject><subject>proprioception</subject><subject>Robotics and AI</subject><subject>soft robotics</subject><issn>2296-9144</issn><issn>2296-9144</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVksFu1DAQhiMEolXpA3BBOXLZxXZsJ74goVULixYVCXq2bGecukrsxXYqwRPw2Hg3ZdWePPb883lG81fVW4zWTdOJDzYGndcEEbzmTdsg_KI6J0TwlcCUvnwSn1WXKd0jhDDraNO2r6uzAuCCCHZe_d1O-xgeoK83wWfn53mqvwbn8-Fu3TBHlV3w9VXKblrC2-T8UKt65zyoWHSTdn5JBVvvwA_5rv4GKs0RJvA51cr39c2-ANyfk-4H-BRi_X1U5qh6U72yakxw-XheVLfXVz83X1a7m8_bzafdylDO8oogA9Aw3iJjDIgWNZx1rCemt4YJJDphcaPAatMhixCABaOZ0ogyxmiHm4tqu3D7oO7lPpap4m8ZlJPHhxAHqWJ2ZgTZaU6A4JaC0BQ4aMG4IlxjzAoPtYX1cWHtZz1Bb8oYUY3PoM8z3t3JITzIDtEWY1oA7x8BMfyaIWU5uWRgHJWHMCdJGGaIixajIsWL1MSQUgR7-gYjeTCEPBpCHgwhF0OUmndP-ztV_F9_8w_1nLYR</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Rupert, Levi</creator><creator>Duggan, Timothy</creator><creator>Killpack, Marc D</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210401</creationdate><title>Improved Continuum Joint Configuration Estimation Using a Linear Combination of Length Measurements and Optimization of Sensor Placement</title><author>Rupert, Levi ; Duggan, Timothy ; Killpack, Marc D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-20cee35670ccce97036585d2cdfc590989f13aefbc80f00eefecb5ab045554813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>continuum joints</topic><topic>estimation</topic><topic>optimization</topic><topic>proprioception</topic><topic>Robotics and AI</topic><topic>soft robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rupert, Levi</creatorcontrib><creatorcontrib>Duggan, Timothy</creatorcontrib><creatorcontrib>Killpack, Marc D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in robotics and AI</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rupert, Levi</au><au>Duggan, Timothy</au><au>Killpack, Marc D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Continuum Joint Configuration Estimation Using a Linear Combination of Length Measurements and Optimization of Sensor Placement</atitle><jtitle>Frontiers in robotics and AI</jtitle><addtitle>Front Robot AI</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>8</volume><spage>637301</spage><epage>637301</epage><pages>637301-637301</pages><issn>2296-9144</issn><eissn>2296-9144</eissn><abstract>This paper presents methods for placing length sensors on a soft continuum robot joint as well as a novel configuration estimation method that drastically minimizes configuration estimation error. The methods utilized for placing sensors along the length of the joint include a single joint length sensor, sensors lined end-to-end, sensors that overlap according to a heuristic, and sensors that are placed by an optimization that we describe in this paper. The methods of configuration estimation include directly relating sensor length to a segment of the joint's angle, using an equal weighting of overlapping sensors that cover a joint segment, and using a weighted linear combination of all sensors on the continuum joint. The weights for the linear combination method are determined using robust linear regression. Using a kinematic simulation we show that placing three or more overlapping sensors and estimating the configuration with a linear combination of sensors resulted in a median error of 0.026% of the max range of motion or less. This is over a 500 times improvement as compared to using a single sensor to estimate the joint configuration. This error was computed across 80 simulated robots of different lengths and ranges of motion. We also found that the fully optimized sensor placement performed only marginally better than the placement of sensors according to the heuristic. This suggests that the use of a linear combination of sensors, with weights found using linear regression is more important than the placement of the overlapping sensors. Further, using the heuristic significantly simplifies the application of these techniques when designing for hardware.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>33869295</pmid><doi>10.3389/frobt.2021.637301</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-9144 |
ispartof | Frontiers in robotics and AI, 2021-04, Vol.8, p.637301-637301 |
issn | 2296-9144 2296-9144 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8b62e2174e9b4e6eb956a26b115b0407 |
source | PubMed Central |
subjects | continuum joints estimation optimization proprioception Robotics and AI soft robotics |
title | Improved Continuum Joint Configuration Estimation Using a Linear Combination of Length Measurements and Optimization of Sensor Placement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A16%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Continuum%20Joint%20Configuration%20Estimation%20Using%20a%20Linear%20Combination%20of%20Length%20Measurements%20and%20Optimization%20of%20Sensor%20Placement&rft.jtitle=Frontiers%20in%20robotics%20and%20AI&rft.au=Rupert,%20Levi&rft.date=2021-04-01&rft.volume=8&rft.spage=637301&rft.epage=637301&rft.pages=637301-637301&rft.issn=2296-9144&rft.eissn=2296-9144&rft_id=info:doi/10.3389/frobt.2021.637301&rft_dat=%3Cproquest_doaj_%3E2515069710%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-20cee35670ccce97036585d2cdfc590989f13aefbc80f00eefecb5ab045554813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2515069710&rft_id=info:pmid/33869295&rfr_iscdi=true |