Loading…
Tumor Microenvironment Multiple Responsive Nanoparticles for Targeted Delivery of Doxorubicin and CpG Against Triple-Negative Breast Cancer
Introduction: Currently, the main treatment for advanced breast cancer is still chemotherapy. Immunological and chemical combination therapy has a coordinated therapeutic effect and achieves some efficacy. However, the immunosuppressive tumor microenvironment is a major cause for the failure of immu...
Saved in:
Published in: | International journal of nanomedicine 2022-01, Vol.17, p.4401-4417 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Introduction: Currently, the main treatment for advanced breast cancer is still chemotherapy. Immunological and chemical combination therapy has a coordinated therapeutic effect and achieves some efficacy. However, the immunosuppressive tumor microenvironment is a major cause for the failure of immunotherapy in breast cancer. CpG oligodeoxynucleotides can activate the tumor immune microenvironment to reverse the failure of immunotherapy. Methods: In this study, we designed an amphiphilic peptide micelle system (Co- LMs), which can targeted delivery of the immune adjuvant CpG and the chemotherapeutic drug doxorubicin to breast cancer tumors simultaneously. The peptide micelle system achieved tumor microenvironment pH and redox-sensitive drug release. Results and Discussion: Co-LMs showed 2.3 times the antitumor efficacy of chemotherapy alone and 5.1 times the antitumor efficacy of immunotherapy alone in triple-negative breast cancer mice. Co-LMs activated cytotoxic [CD8.sup.+] T lymphocytes and [CD4.sup.+] T cells in mice to a greater extent than single treatments. We also found that Co-LMs inhibited the metastasis of circulating tumor cells in the bloodstream to some extent. These results indicate that the Co-LMs offer a promising therapeutic strategy against triple-negative breast cancer. Keywords: chemo-immunotherapy, tumor microenvironment, CpG, nanoparticles, triple-negative breast cancer |
---|---|
ISSN: | 1178-2013 1176-9114 1178-2013 |
DOI: | 10.2147/IJN.S377702 |