Loading…
Constraining equation of state of nuclear matter by charge-changing cross section measurements of mirror nuclei
The nuclear symmetry energy plays a key role in determining the equation of state (EoS) of dense, neutron-rich matter, which connects the atomic nuclei with the hot and dense matter in universe, thus has been the subject of intense investigations in laboratory experiments, astronomy observations and...
Saved in:
Published in: | Physics letters. B 2022-10, Vol.833, p.137333, Article 137333 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2143-dbd81a89048214b76576644f2475da2c4d861e482ca8580956120ed1937407013 |
---|---|
cites | cdi_FETCH-LOGICAL-c2143-dbd81a89048214b76576644f2475da2c4d861e482ca8580956120ed1937407013 |
container_end_page | |
container_issue | |
container_start_page | 137333 |
container_title | Physics letters. B |
container_volume | 833 |
creator | Xu, Jun-Yao Li, Zheng-Zheng Sun, Bao-Hua Niu, Yi-Fei Roca-Maza, Xavier Sagawa, Hiroyuki Tanihata, Isao |
description | The nuclear symmetry energy plays a key role in determining the equation of state (EoS) of dense, neutron-rich matter, which connects the atomic nuclei with the hot and dense matter in universe, thus has been the subject of intense investigations in laboratory experiments, astronomy observations and theories. Various probes have been proposed to constrain the symmetry energy and its density dependence. Currently, the extensive data yield already a good and consistent constraint to the symmetry energy (Esym(ρ)) at saturation density, but do not yet give a consistent result of one critical EoS parameter, L, the density dependence of the symmetry energy. In this work, we report a new probe of L at saturation density. A good linear correlation is found between L and the charge changing cross section difference (Δσcc) of mirror nuclei 30Si-30S for both the Skyrme-Hartree-Fock theory (SHF) and covariant (relativistic) density functionals (CDF). We found that the pairing effect for this mirror pair is essential to get a consistent correlation between L and Δσcc in both the SHF and CDF. Here, the cross sections are calculated on the same target and at the same energy using the zero-range optical-limit Glauber model. The linearity is found to be in the same precision as those found between L and neutron skin thickness or proton radius difference. |
doi_str_mv | 10.1016/j.physletb.2022.137333 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8bad307b1a0245f8ad26350025a4acdd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8bad307b1a0245f8ad26350025a4acdd</doaj_id><sourcerecordid>oai_doaj_org_article_8bad307b1a0245f8ad26350025a4acdd</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2143-dbd81a89048214b76576644f2475da2c4d861e482ca8580956120ed1937407013</originalsourceid><addsrcrecordid>eNo9kMlugzAQhn1opabLK1S8AHS8Yo5V1CVSpF7aszVgQ4gCTm3nkLcvhKin2fR_M_MT8kyhoEDVy7447s7x4FJdMGCsoLzknN-QFfAScqYqfkfuY9wDAJWgVsSv_RhTwH7sxy5zvydMvR8z32YxYXJzMp6ag8OQDZiSC1l9zpodhs7lUxi7WdYEH2MWXXPRDg7jKbjBjSnO-qEPwYcF0z-S2xYP0T1d4wP5eX_7Xn_m26-Pzfp1mzeMCp7b2mqKugKhp7oulSyVEqJlopQWWSOsVtRNwwa11FBJRRk4SyteCiiB8geyWbjW494cQz9gOBuPvbk0fOgMhtRPJxldo-VQ1hSBCdlqtExxCcAkCmysnVhqYV3-DK7951Ews-1m2nC13cy2m8V2_gfbXnvU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constraining equation of state of nuclear matter by charge-changing cross section measurements of mirror nuclei</title><source>Elsevier</source><source>ScienceDirect (Online service)</source><creator>Xu, Jun-Yao ; Li, Zheng-Zheng ; Sun, Bao-Hua ; Niu, Yi-Fei ; Roca-Maza, Xavier ; Sagawa, Hiroyuki ; Tanihata, Isao</creator><creatorcontrib>Xu, Jun-Yao ; Li, Zheng-Zheng ; Sun, Bao-Hua ; Niu, Yi-Fei ; Roca-Maza, Xavier ; Sagawa, Hiroyuki ; Tanihata, Isao</creatorcontrib><description>The nuclear symmetry energy plays a key role in determining the equation of state (EoS) of dense, neutron-rich matter, which connects the atomic nuclei with the hot and dense matter in universe, thus has been the subject of intense investigations in laboratory experiments, astronomy observations and theories. Various probes have been proposed to constrain the symmetry energy and its density dependence. Currently, the extensive data yield already a good and consistent constraint to the symmetry energy (Esym(ρ)) at saturation density, but do not yet give a consistent result of one critical EoS parameter, L, the density dependence of the symmetry energy. In this work, we report a new probe of L at saturation density. A good linear correlation is found between L and the charge changing cross section difference (Δσcc) of mirror nuclei 30Si-30S for both the Skyrme-Hartree-Fock theory (SHF) and covariant (relativistic) density functionals (CDF). We found that the pairing effect for this mirror pair is essential to get a consistent correlation between L and Δσcc in both the SHF and CDF. Here, the cross sections are calculated on the same target and at the same energy using the zero-range optical-limit Glauber model. The linearity is found to be in the same precision as those found between L and neutron skin thickness or proton radius difference.</description><identifier>ISSN: 0370-2693</identifier><identifier>DOI: 10.1016/j.physletb.2022.137333</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Charge-changing cross section ; Equation of state of nuclear matter ; Mirror nuclei ; Symmetry energy</subject><ispartof>Physics letters. B, 2022-10, Vol.833, p.137333, Article 137333</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2143-dbd81a89048214b76576644f2475da2c4d861e482ca8580956120ed1937407013</citedby><cites>FETCH-LOGICAL-c2143-dbd81a89048214b76576644f2475da2c4d861e482ca8580956120ed1937407013</cites><orcidid>0000-0002-2100-6407 ; 0000-0001-9868-5711 ; 0000-0002-0933-7617 ; 0000-0002-4996-966X ; 0000-0003-1029-1887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Jun-Yao</creatorcontrib><creatorcontrib>Li, Zheng-Zheng</creatorcontrib><creatorcontrib>Sun, Bao-Hua</creatorcontrib><creatorcontrib>Niu, Yi-Fei</creatorcontrib><creatorcontrib>Roca-Maza, Xavier</creatorcontrib><creatorcontrib>Sagawa, Hiroyuki</creatorcontrib><creatorcontrib>Tanihata, Isao</creatorcontrib><title>Constraining equation of state of nuclear matter by charge-changing cross section measurements of mirror nuclei</title><title>Physics letters. B</title><description>The nuclear symmetry energy plays a key role in determining the equation of state (EoS) of dense, neutron-rich matter, which connects the atomic nuclei with the hot and dense matter in universe, thus has been the subject of intense investigations in laboratory experiments, astronomy observations and theories. Various probes have been proposed to constrain the symmetry energy and its density dependence. Currently, the extensive data yield already a good and consistent constraint to the symmetry energy (Esym(ρ)) at saturation density, but do not yet give a consistent result of one critical EoS parameter, L, the density dependence of the symmetry energy. In this work, we report a new probe of L at saturation density. A good linear correlation is found between L and the charge changing cross section difference (Δσcc) of mirror nuclei 30Si-30S for both the Skyrme-Hartree-Fock theory (SHF) and covariant (relativistic) density functionals (CDF). We found that the pairing effect for this mirror pair is essential to get a consistent correlation between L and Δσcc in both the SHF and CDF. Here, the cross sections are calculated on the same target and at the same energy using the zero-range optical-limit Glauber model. The linearity is found to be in the same precision as those found between L and neutron skin thickness or proton radius difference.</description><subject>Charge-changing cross section</subject><subject>Equation of state of nuclear matter</subject><subject>Mirror nuclei</subject><subject>Symmetry energy</subject><issn>0370-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kMlugzAQhn1opabLK1S8AHS8Yo5V1CVSpF7aszVgQ4gCTm3nkLcvhKin2fR_M_MT8kyhoEDVy7447s7x4FJdMGCsoLzknN-QFfAScqYqfkfuY9wDAJWgVsSv_RhTwH7sxy5zvydMvR8z32YxYXJzMp6ag8OQDZiSC1l9zpodhs7lUxi7WdYEH2MWXXPRDg7jKbjBjSnO-qEPwYcF0z-S2xYP0T1d4wP5eX_7Xn_m26-Pzfp1mzeMCp7b2mqKugKhp7oulSyVEqJlopQWWSOsVtRNwwa11FBJRRk4SyteCiiB8geyWbjW494cQz9gOBuPvbk0fOgMhtRPJxldo-VQ1hSBCdlqtExxCcAkCmysnVhqYV3-DK7951Ews-1m2nC13cy2m8V2_gfbXnvU</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Xu, Jun-Yao</creator><creator>Li, Zheng-Zheng</creator><creator>Sun, Bao-Hua</creator><creator>Niu, Yi-Fei</creator><creator>Roca-Maza, Xavier</creator><creator>Sagawa, Hiroyuki</creator><creator>Tanihata, Isao</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2100-6407</orcidid><orcidid>https://orcid.org/0000-0001-9868-5711</orcidid><orcidid>https://orcid.org/0000-0002-0933-7617</orcidid><orcidid>https://orcid.org/0000-0002-4996-966X</orcidid><orcidid>https://orcid.org/0000-0003-1029-1887</orcidid></search><sort><creationdate>202210</creationdate><title>Constraining equation of state of nuclear matter by charge-changing cross section measurements of mirror nuclei</title><author>Xu, Jun-Yao ; Li, Zheng-Zheng ; Sun, Bao-Hua ; Niu, Yi-Fei ; Roca-Maza, Xavier ; Sagawa, Hiroyuki ; Tanihata, Isao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2143-dbd81a89048214b76576644f2475da2c4d861e482ca8580956120ed1937407013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Charge-changing cross section</topic><topic>Equation of state of nuclear matter</topic><topic>Mirror nuclei</topic><topic>Symmetry energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jun-Yao</creatorcontrib><creatorcontrib>Li, Zheng-Zheng</creatorcontrib><creatorcontrib>Sun, Bao-Hua</creatorcontrib><creatorcontrib>Niu, Yi-Fei</creatorcontrib><creatorcontrib>Roca-Maza, Xavier</creatorcontrib><creatorcontrib>Sagawa, Hiroyuki</creatorcontrib><creatorcontrib>Tanihata, Isao</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physics letters. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jun-Yao</au><au>Li, Zheng-Zheng</au><au>Sun, Bao-Hua</au><au>Niu, Yi-Fei</au><au>Roca-Maza, Xavier</au><au>Sagawa, Hiroyuki</au><au>Tanihata, Isao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraining equation of state of nuclear matter by charge-changing cross section measurements of mirror nuclei</atitle><jtitle>Physics letters. B</jtitle><date>2022-10</date><risdate>2022</risdate><volume>833</volume><spage>137333</spage><pages>137333-</pages><artnum>137333</artnum><issn>0370-2693</issn><abstract>The nuclear symmetry energy plays a key role in determining the equation of state (EoS) of dense, neutron-rich matter, which connects the atomic nuclei with the hot and dense matter in universe, thus has been the subject of intense investigations in laboratory experiments, astronomy observations and theories. Various probes have been proposed to constrain the symmetry energy and its density dependence. Currently, the extensive data yield already a good and consistent constraint to the symmetry energy (Esym(ρ)) at saturation density, but do not yet give a consistent result of one critical EoS parameter, L, the density dependence of the symmetry energy. In this work, we report a new probe of L at saturation density. A good linear correlation is found between L and the charge changing cross section difference (Δσcc) of mirror nuclei 30Si-30S for both the Skyrme-Hartree-Fock theory (SHF) and covariant (relativistic) density functionals (CDF). We found that the pairing effect for this mirror pair is essential to get a consistent correlation between L and Δσcc in both the SHF and CDF. Here, the cross sections are calculated on the same target and at the same energy using the zero-range optical-limit Glauber model. The linearity is found to be in the same precision as those found between L and neutron skin thickness or proton radius difference.</abstract><pub>Elsevier</pub><doi>10.1016/j.physletb.2022.137333</doi><orcidid>https://orcid.org/0000-0002-2100-6407</orcidid><orcidid>https://orcid.org/0000-0001-9868-5711</orcidid><orcidid>https://orcid.org/0000-0002-0933-7617</orcidid><orcidid>https://orcid.org/0000-0002-4996-966X</orcidid><orcidid>https://orcid.org/0000-0003-1029-1887</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-2693 |
ispartof | Physics letters. B, 2022-10, Vol.833, p.137333, Article 137333 |
issn | 0370-2693 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8bad307b1a0245f8ad26350025a4acdd |
source | Elsevier; ScienceDirect (Online service) |
subjects | Charge-changing cross section Equation of state of nuclear matter Mirror nuclei Symmetry energy |
title | Constraining equation of state of nuclear matter by charge-changing cross section measurements of mirror nuclei |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraining%20equation%20of%20state%20of%20nuclear%20matter%20by%20charge-changing%20cross%20section%20measurements%20of%20mirror%20nuclei&rft.jtitle=Physics%20letters.%20B&rft.au=Xu,%20Jun-Yao&rft.date=2022-10&rft.volume=833&rft.spage=137333&rft.pages=137333-&rft.artnum=137333&rft.issn=0370-2693&rft_id=info:doi/10.1016/j.physletb.2022.137333&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_8bad307b1a0245f8ad26350025a4acdd%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2143-dbd81a89048214b76576644f2475da2c4d861e482ca8580956120ed1937407013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |