Loading…
TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments
Although numerous effective Simultaneous Localization and Mapping (SLAM) systems have been developed, complex dynamic environments continue to present challenges, such as managing moving objects and enabling robots to comprehend environments. This paper focuses on a visual SLAM method specifically d...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2023-12, Vol.23 (24), p.9807 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-47c83726cd2281142bceda6fdbc16be00076863607045c73f8e45782558be1543 |
container_end_page | |
container_issue | 24 |
container_start_page | 9807 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 23 |
creator | Zhang, Yongchao Li, Yuanming Chen, Pengzhan |
description | Although numerous effective Simultaneous Localization and Mapping (SLAM) systems have been developed, complex dynamic environments continue to present challenges, such as managing moving objects and enabling robots to comprehend environments. This paper focuses on a visual SLAM method specifically designed for complex dynamic environments. Our approach proposes a dynamic feature removal module based on the tight coupling of instance segmentation and multi-view geometric constraints (TSG). This method seamlessly integrates semantic information with geometric constraint data, using the fundamental matrix as a connecting element. In particular, instance segmentation is performed on frames to eliminate all dynamic and potentially dynamic features, retaining only reliable static features for sequential feature matching and acquiring a dependable fundamental matrix. Subsequently, based on this matrix, true dynamic features are identified and removed by capitalizing on multi-view geometry constraints while preserving reliable static features for further tracking and mapping. An instance-level semantic map of the global scenario is constructed to enhance the perception and understanding of complex dynamic environments. The proposed method is assessed on TUM datasets and in real-world scenarios, demonstrating that TSG-SLAM exhibits superior performance in detecting and eliminating dynamic feature points and obtains good localization accuracy in dynamic environments. |
doi_str_mv | 10.3390/s23249807 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8bb1d49e82e640c58c9e4299ff335fda</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779284427</galeid><doaj_id>oai_doaj_org_article_8bb1d49e82e640c58c9e4299ff335fda</doaj_id><sourcerecordid>A779284427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-47c83726cd2281142bceda6fdbc16be00076863607045c73f8e45782558be1543</originalsourceid><addsrcrecordid>eNpdklFv0zAQxyMEYmPwwBdAkXhhDxmO7cQ2L6jqSqlUxEPLs-U458xVYhc7nSifHoeOakOWbN_d7_72nS7L3pbohhCBPkZMMBUcsWfZZUkxLTjG6Pmj-0X2KsYdQpgQwl9mF4SXRNQVucx-bzfLYrOeffuUT3u-GPa9P1rX5Vvb3Y353B_2_WR6k69cHJXTkG-gG8CNarTe5cq1-RL8AGOwOvEJCsq6MebWJTPpwa_89ujUkMILd2-Dd1N2fJ29MKqP8ObhvMp-fFls51-L9fflaj5bF5rWYiwo05wwXOsWY16mkhoNrapN2-iybgAhxGpekxoxRCvNiOFAK8ZxVfEGyoqSq2x10m292sl9sIMKR-mVlX8dPnRShdHqHiRvmrKlAjiGmiJdcS2AYiGMIaQyrUpan09a-0MzQKtTHUH1T0SfRpy9k52_lyVilCGBksKHB4Xgfx4gjnKwUUPfKwf-ECUWqKowQ4Ql9P1_6M4fgku9migqMBcYJ-rmRHUqVWCd8elhnVYLqePegbHJP2Ms8ZTiSfb6lKCDjzGAOX-_RHKaJ3mep8S-e1zvmfw3QOQPGQzELQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904928922</pqid></control><display><type>article</type><title>TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Zhang, Yongchao ; Li, Yuanming ; Chen, Pengzhan</creator><creatorcontrib>Zhang, Yongchao ; Li, Yuanming ; Chen, Pengzhan</creatorcontrib><description>Although numerous effective Simultaneous Localization and Mapping (SLAM) systems have been developed, complex dynamic environments continue to present challenges, such as managing moving objects and enabling robots to comprehend environments. This paper focuses on a visual SLAM method specifically designed for complex dynamic environments. Our approach proposes a dynamic feature removal module based on the tight coupling of instance segmentation and multi-view geometric constraints (TSG). This method seamlessly integrates semantic information with geometric constraint data, using the fundamental matrix as a connecting element. In particular, instance segmentation is performed on frames to eliminate all dynamic and potentially dynamic features, retaining only reliable static features for sequential feature matching and acquiring a dependable fundamental matrix. Subsequently, based on this matrix, true dynamic features are identified and removed by capitalizing on multi-view geometry constraints while preserving reliable static features for further tracking and mapping. An instance-level semantic map of the global scenario is constructed to enhance the perception and understanding of complex dynamic environments. The proposed method is assessed on TUM datasets and in real-world scenarios, demonstrating that TSG-SLAM exhibits superior performance in detecting and eliminating dynamic feature points and obtains good localization accuracy in dynamic environments.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23249807</identifier><identifier>PMID: 38139653</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Cameras ; complex dynamic environment ; fundamental matrix ; Localization ; Mapping ; multi-view geometric constraint ; Robots ; semantic segmentation ; Semantics ; Sensors ; SLAM</subject><ispartof>Sensors (Basel, Switzerland), 2023-12, Vol.23 (24), p.9807</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-47c83726cd2281142bceda6fdbc16be00076863607045c73f8e45782558be1543</cites><orcidid>0009-0003-4255-3690 ; 0000-0001-7188-362X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2904928922/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2904928922?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38139653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yongchao</creatorcontrib><creatorcontrib>Li, Yuanming</creatorcontrib><creatorcontrib>Chen, Pengzhan</creatorcontrib><title>TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Although numerous effective Simultaneous Localization and Mapping (SLAM) systems have been developed, complex dynamic environments continue to present challenges, such as managing moving objects and enabling robots to comprehend environments. This paper focuses on a visual SLAM method specifically designed for complex dynamic environments. Our approach proposes a dynamic feature removal module based on the tight coupling of instance segmentation and multi-view geometric constraints (TSG). This method seamlessly integrates semantic information with geometric constraint data, using the fundamental matrix as a connecting element. In particular, instance segmentation is performed on frames to eliminate all dynamic and potentially dynamic features, retaining only reliable static features for sequential feature matching and acquiring a dependable fundamental matrix. Subsequently, based on this matrix, true dynamic features are identified and removed by capitalizing on multi-view geometry constraints while preserving reliable static features for further tracking and mapping. An instance-level semantic map of the global scenario is constructed to enhance the perception and understanding of complex dynamic environments. The proposed method is assessed on TUM datasets and in real-world scenarios, demonstrating that TSG-SLAM exhibits superior performance in detecting and eliminating dynamic feature points and obtains good localization accuracy in dynamic environments.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>complex dynamic environment</subject><subject>fundamental matrix</subject><subject>Localization</subject><subject>Mapping</subject><subject>multi-view geometric constraint</subject><subject>Robots</subject><subject>semantic segmentation</subject><subject>Semantics</subject><subject>Sensors</subject><subject>SLAM</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdklFv0zAQxyMEYmPwwBdAkXhhDxmO7cQ2L6jqSqlUxEPLs-U458xVYhc7nSifHoeOakOWbN_d7_72nS7L3pbohhCBPkZMMBUcsWfZZUkxLTjG6Pmj-0X2KsYdQpgQwl9mF4SXRNQVucx-bzfLYrOeffuUT3u-GPa9P1rX5Vvb3Y353B_2_WR6k69cHJXTkG-gG8CNarTe5cq1-RL8AGOwOvEJCsq6MebWJTPpwa_89ujUkMILd2-Dd1N2fJ29MKqP8ObhvMp-fFls51-L9fflaj5bF5rWYiwo05wwXOsWY16mkhoNrapN2-iybgAhxGpekxoxRCvNiOFAK8ZxVfEGyoqSq2x10m292sl9sIMKR-mVlX8dPnRShdHqHiRvmrKlAjiGmiJdcS2AYiGMIaQyrUpan09a-0MzQKtTHUH1T0SfRpy9k52_lyVilCGBksKHB4Xgfx4gjnKwUUPfKwf-ECUWqKowQ4Ql9P1_6M4fgku9migqMBcYJ-rmRHUqVWCd8elhnVYLqePegbHJP2Ms8ZTiSfb6lKCDjzGAOX-_RHKaJ3mep8S-e1zvmfw3QOQPGQzELQ</recordid><startdate>20231213</startdate><enddate>20231213</enddate><creator>Zhang, Yongchao</creator><creator>Li, Yuanming</creator><creator>Chen, Pengzhan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-4255-3690</orcidid><orcidid>https://orcid.org/0000-0001-7188-362X</orcidid></search><sort><creationdate>20231213</creationdate><title>TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments</title><author>Zhang, Yongchao ; Li, Yuanming ; Chen, Pengzhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-47c83726cd2281142bceda6fdbc16be00076863607045c73f8e45782558be1543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>complex dynamic environment</topic><topic>fundamental matrix</topic><topic>Localization</topic><topic>Mapping</topic><topic>multi-view geometric constraint</topic><topic>Robots</topic><topic>semantic segmentation</topic><topic>Semantics</topic><topic>Sensors</topic><topic>SLAM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yongchao</creatorcontrib><creatorcontrib>Li, Yuanming</creatorcontrib><creatorcontrib>Chen, Pengzhan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yongchao</au><au>Li, Yuanming</au><au>Chen, Pengzhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-12-13</date><risdate>2023</risdate><volume>23</volume><issue>24</issue><spage>9807</spage><pages>9807-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Although numerous effective Simultaneous Localization and Mapping (SLAM) systems have been developed, complex dynamic environments continue to present challenges, such as managing moving objects and enabling robots to comprehend environments. This paper focuses on a visual SLAM method specifically designed for complex dynamic environments. Our approach proposes a dynamic feature removal module based on the tight coupling of instance segmentation and multi-view geometric constraints (TSG). This method seamlessly integrates semantic information with geometric constraint data, using the fundamental matrix as a connecting element. In particular, instance segmentation is performed on frames to eliminate all dynamic and potentially dynamic features, retaining only reliable static features for sequential feature matching and acquiring a dependable fundamental matrix. Subsequently, based on this matrix, true dynamic features are identified and removed by capitalizing on multi-view geometry constraints while preserving reliable static features for further tracking and mapping. An instance-level semantic map of the global scenario is constructed to enhance the perception and understanding of complex dynamic environments. The proposed method is assessed on TUM datasets and in real-world scenarios, demonstrating that TSG-SLAM exhibits superior performance in detecting and eliminating dynamic feature points and obtains good localization accuracy in dynamic environments.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38139653</pmid><doi>10.3390/s23249807</doi><orcidid>https://orcid.org/0009-0003-4255-3690</orcidid><orcidid>https://orcid.org/0000-0001-7188-362X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2023-12, Vol.23 (24), p.9807 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8bb1d49e82e640c58c9e4299ff335fda |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Accuracy Algorithms Cameras complex dynamic environment fundamental matrix Localization Mapping multi-view geometric constraint Robots semantic segmentation Semantics Sensors SLAM |
title | TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TSG-SLAM:%20SLAM%20Employing%20Tight%20Coupling%20of%20Instance%20Segmentation%20and%20Geometric%20Constraints%20in%20Complex%20Dynamic%20Environments&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Zhang,%20Yongchao&rft.date=2023-12-13&rft.volume=23&rft.issue=24&rft.spage=9807&rft.pages=9807-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23249807&rft_dat=%3Cgale_doaj_%3EA779284427%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-47c83726cd2281142bceda6fdbc16be00076863607045c73f8e45782558be1543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904928922&rft_id=info:pmid/38139653&rft_galeid=A779284427&rfr_iscdi=true |