Loading…

TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments

Although numerous effective Simultaneous Localization and Mapping (SLAM) systems have been developed, complex dynamic environments continue to present challenges, such as managing moving objects and enabling robots to comprehend environments. This paper focuses on a visual SLAM method specifically d...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-12, Vol.23 (24), p.9807
Main Authors: Zhang, Yongchao, Li, Yuanming, Chen, Pengzhan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c469t-47c83726cd2281142bceda6fdbc16be00076863607045c73f8e45782558be1543
container_end_page
container_issue 24
container_start_page 9807
container_title Sensors (Basel, Switzerland)
container_volume 23
creator Zhang, Yongchao
Li, Yuanming
Chen, Pengzhan
description Although numerous effective Simultaneous Localization and Mapping (SLAM) systems have been developed, complex dynamic environments continue to present challenges, such as managing moving objects and enabling robots to comprehend environments. This paper focuses on a visual SLAM method specifically designed for complex dynamic environments. Our approach proposes a dynamic feature removal module based on the tight coupling of instance segmentation and multi-view geometric constraints (TSG). This method seamlessly integrates semantic information with geometric constraint data, using the fundamental matrix as a connecting element. In particular, instance segmentation is performed on frames to eliminate all dynamic and potentially dynamic features, retaining only reliable static features for sequential feature matching and acquiring a dependable fundamental matrix. Subsequently, based on this matrix, true dynamic features are identified and removed by capitalizing on multi-view geometry constraints while preserving reliable static features for further tracking and mapping. An instance-level semantic map of the global scenario is constructed to enhance the perception and understanding of complex dynamic environments. The proposed method is assessed on TUM datasets and in real-world scenarios, demonstrating that TSG-SLAM exhibits superior performance in detecting and eliminating dynamic feature points and obtains good localization accuracy in dynamic environments.
doi_str_mv 10.3390/s23249807
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8bb1d49e82e640c58c9e4299ff335fda</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779284427</galeid><doaj_id>oai_doaj_org_article_8bb1d49e82e640c58c9e4299ff335fda</doaj_id><sourcerecordid>A779284427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-47c83726cd2281142bceda6fdbc16be00076863607045c73f8e45782558be1543</originalsourceid><addsrcrecordid>eNpdklFv0zAQxyMEYmPwwBdAkXhhDxmO7cQ2L6jqSqlUxEPLs-U458xVYhc7nSifHoeOakOWbN_d7_72nS7L3pbohhCBPkZMMBUcsWfZZUkxLTjG6Pmj-0X2KsYdQpgQwl9mF4SXRNQVucx-bzfLYrOeffuUT3u-GPa9P1rX5Vvb3Y353B_2_WR6k69cHJXTkG-gG8CNarTe5cq1-RL8AGOwOvEJCsq6MebWJTPpwa_89ujUkMILd2-Dd1N2fJ29MKqP8ObhvMp-fFls51-L9fflaj5bF5rWYiwo05wwXOsWY16mkhoNrapN2-iybgAhxGpekxoxRCvNiOFAK8ZxVfEGyoqSq2x10m292sl9sIMKR-mVlX8dPnRShdHqHiRvmrKlAjiGmiJdcS2AYiGMIaQyrUpan09a-0MzQKtTHUH1T0SfRpy9k52_lyVilCGBksKHB4Xgfx4gjnKwUUPfKwf-ECUWqKowQ4Ql9P1_6M4fgku9migqMBcYJ-rmRHUqVWCd8elhnVYLqePegbHJP2Ms8ZTiSfb6lKCDjzGAOX-_RHKaJ3mep8S-e1zvmfw3QOQPGQzELQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904928922</pqid></control><display><type>article</type><title>TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Zhang, Yongchao ; Li, Yuanming ; Chen, Pengzhan</creator><creatorcontrib>Zhang, Yongchao ; Li, Yuanming ; Chen, Pengzhan</creatorcontrib><description>Although numerous effective Simultaneous Localization and Mapping (SLAM) systems have been developed, complex dynamic environments continue to present challenges, such as managing moving objects and enabling robots to comprehend environments. This paper focuses on a visual SLAM method specifically designed for complex dynamic environments. Our approach proposes a dynamic feature removal module based on the tight coupling of instance segmentation and multi-view geometric constraints (TSG). This method seamlessly integrates semantic information with geometric constraint data, using the fundamental matrix as a connecting element. In particular, instance segmentation is performed on frames to eliminate all dynamic and potentially dynamic features, retaining only reliable static features for sequential feature matching and acquiring a dependable fundamental matrix. Subsequently, based on this matrix, true dynamic features are identified and removed by capitalizing on multi-view geometry constraints while preserving reliable static features for further tracking and mapping. An instance-level semantic map of the global scenario is constructed to enhance the perception and understanding of complex dynamic environments. The proposed method is assessed on TUM datasets and in real-world scenarios, demonstrating that TSG-SLAM exhibits superior performance in detecting and eliminating dynamic feature points and obtains good localization accuracy in dynamic environments.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s23249807</identifier><identifier>PMID: 38139653</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Cameras ; complex dynamic environment ; fundamental matrix ; Localization ; Mapping ; multi-view geometric constraint ; Robots ; semantic segmentation ; Semantics ; Sensors ; SLAM</subject><ispartof>Sensors (Basel, Switzerland), 2023-12, Vol.23 (24), p.9807</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-47c83726cd2281142bceda6fdbc16be00076863607045c73f8e45782558be1543</cites><orcidid>0009-0003-4255-3690 ; 0000-0001-7188-362X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2904928922/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2904928922?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38139653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yongchao</creatorcontrib><creatorcontrib>Li, Yuanming</creatorcontrib><creatorcontrib>Chen, Pengzhan</creatorcontrib><title>TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Although numerous effective Simultaneous Localization and Mapping (SLAM) systems have been developed, complex dynamic environments continue to present challenges, such as managing moving objects and enabling robots to comprehend environments. This paper focuses on a visual SLAM method specifically designed for complex dynamic environments. Our approach proposes a dynamic feature removal module based on the tight coupling of instance segmentation and multi-view geometric constraints (TSG). This method seamlessly integrates semantic information with geometric constraint data, using the fundamental matrix as a connecting element. In particular, instance segmentation is performed on frames to eliminate all dynamic and potentially dynamic features, retaining only reliable static features for sequential feature matching and acquiring a dependable fundamental matrix. Subsequently, based on this matrix, true dynamic features are identified and removed by capitalizing on multi-view geometry constraints while preserving reliable static features for further tracking and mapping. An instance-level semantic map of the global scenario is constructed to enhance the perception and understanding of complex dynamic environments. The proposed method is assessed on TUM datasets and in real-world scenarios, demonstrating that TSG-SLAM exhibits superior performance in detecting and eliminating dynamic feature points and obtains good localization accuracy in dynamic environments.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>complex dynamic environment</subject><subject>fundamental matrix</subject><subject>Localization</subject><subject>Mapping</subject><subject>multi-view geometric constraint</subject><subject>Robots</subject><subject>semantic segmentation</subject><subject>Semantics</subject><subject>Sensors</subject><subject>SLAM</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdklFv0zAQxyMEYmPwwBdAkXhhDxmO7cQ2L6jqSqlUxEPLs-U458xVYhc7nSifHoeOakOWbN_d7_72nS7L3pbohhCBPkZMMBUcsWfZZUkxLTjG6Pmj-0X2KsYdQpgQwl9mF4SXRNQVucx-bzfLYrOeffuUT3u-GPa9P1rX5Vvb3Y353B_2_WR6k69cHJXTkG-gG8CNarTe5cq1-RL8AGOwOvEJCsq6MebWJTPpwa_89ujUkMILd2-Dd1N2fJ29MKqP8ObhvMp-fFls51-L9fflaj5bF5rWYiwo05wwXOsWY16mkhoNrapN2-iybgAhxGpekxoxRCvNiOFAK8ZxVfEGyoqSq2x10m292sl9sIMKR-mVlX8dPnRShdHqHiRvmrKlAjiGmiJdcS2AYiGMIaQyrUpan09a-0MzQKtTHUH1T0SfRpy9k52_lyVilCGBksKHB4Xgfx4gjnKwUUPfKwf-ECUWqKowQ4Ql9P1_6M4fgku9migqMBcYJ-rmRHUqVWCd8elhnVYLqePegbHJP2Ms8ZTiSfb6lKCDjzGAOX-_RHKaJ3mep8S-e1zvmfw3QOQPGQzELQ</recordid><startdate>20231213</startdate><enddate>20231213</enddate><creator>Zhang, Yongchao</creator><creator>Li, Yuanming</creator><creator>Chen, Pengzhan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-4255-3690</orcidid><orcidid>https://orcid.org/0000-0001-7188-362X</orcidid></search><sort><creationdate>20231213</creationdate><title>TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments</title><author>Zhang, Yongchao ; Li, Yuanming ; Chen, Pengzhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-47c83726cd2281142bceda6fdbc16be00076863607045c73f8e45782558be1543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>complex dynamic environment</topic><topic>fundamental matrix</topic><topic>Localization</topic><topic>Mapping</topic><topic>multi-view geometric constraint</topic><topic>Robots</topic><topic>semantic segmentation</topic><topic>Semantics</topic><topic>Sensors</topic><topic>SLAM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yongchao</creatorcontrib><creatorcontrib>Li, Yuanming</creatorcontrib><creatorcontrib>Chen, Pengzhan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yongchao</au><au>Li, Yuanming</au><au>Chen, Pengzhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2023-12-13</date><risdate>2023</risdate><volume>23</volume><issue>24</issue><spage>9807</spage><pages>9807-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Although numerous effective Simultaneous Localization and Mapping (SLAM) systems have been developed, complex dynamic environments continue to present challenges, such as managing moving objects and enabling robots to comprehend environments. This paper focuses on a visual SLAM method specifically designed for complex dynamic environments. Our approach proposes a dynamic feature removal module based on the tight coupling of instance segmentation and multi-view geometric constraints (TSG). This method seamlessly integrates semantic information with geometric constraint data, using the fundamental matrix as a connecting element. In particular, instance segmentation is performed on frames to eliminate all dynamic and potentially dynamic features, retaining only reliable static features for sequential feature matching and acquiring a dependable fundamental matrix. Subsequently, based on this matrix, true dynamic features are identified and removed by capitalizing on multi-view geometry constraints while preserving reliable static features for further tracking and mapping. An instance-level semantic map of the global scenario is constructed to enhance the perception and understanding of complex dynamic environments. The proposed method is assessed on TUM datasets and in real-world scenarios, demonstrating that TSG-SLAM exhibits superior performance in detecting and eliminating dynamic feature points and obtains good localization accuracy in dynamic environments.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38139653</pmid><doi>10.3390/s23249807</doi><orcidid>https://orcid.org/0009-0003-4255-3690</orcidid><orcidid>https://orcid.org/0000-0001-7188-362X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2023-12, Vol.23 (24), p.9807
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8bb1d49e82e640c58c9e4299ff335fda
source PubMed Central Free; Publicly Available Content Database
subjects Accuracy
Algorithms
Cameras
complex dynamic environment
fundamental matrix
Localization
Mapping
multi-view geometric constraint
Robots
semantic segmentation
Semantics
Sensors
SLAM
title TSG-SLAM: SLAM Employing Tight Coupling of Instance Segmentation and Geometric Constraints in Complex Dynamic Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TSG-SLAM:%20SLAM%20Employing%20Tight%20Coupling%20of%20Instance%20Segmentation%20and%20Geometric%20Constraints%20in%20Complex%20Dynamic%20Environments&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Zhang,%20Yongchao&rft.date=2023-12-13&rft.volume=23&rft.issue=24&rft.spage=9807&rft.pages=9807-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s23249807&rft_dat=%3Cgale_doaj_%3EA779284427%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-47c83726cd2281142bceda6fdbc16be00076863607045c73f8e45782558be1543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2904928922&rft_id=info:pmid/38139653&rft_galeid=A779284427&rfr_iscdi=true