Loading…
Polynaphthylimide–Azomethines Containing Triphenylamine or Carbazole Moieties with Tuned Optoelectronic Properties through Molecular Design
Polyazomethines containing electron-donor triphenylamine (TPA) or carbazole (Cbz) and electron-acceptor naphthyl(di)imide were synthesized and investigated with regard to thermal, optical and electronic features, with a focus on their modulation by molecular design. The polycondesation of an imido-b...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2022-09, Vol.27 (18), p.5761 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-baefe05d64055326122919fc7c2208a182e841110981a466826f685be918b8e73 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-baefe05d64055326122919fc7c2208a182e841110981a466826f685be918b8e73 |
container_end_page | |
container_issue | 18 |
container_start_page | 5761 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 27 |
creator | Soroceanu, Marius Constantin, Catalin-Paul Damaceanu, Mariana-Dana |
description | Polyazomethines containing electron-donor triphenylamine (TPA) or carbazole (Cbz) and electron-acceptor naphthyl(di)imide were synthesized and investigated with regard to thermal, optical and electronic features, with a focus on their modulation by molecular design. The polycondesation of an imido-based diamine with a Cbz- or TPA-based dialdehyde led to donor-acceptor polymers with good thermostability, up to 318 °C. These displayed good solubility in organic solvents, which enabled easy polymer processability in thin films with different molecular assemblies. The molecular order improved the charge carrier’s mobility, with a direct impact on the bandgap energy. The optical properties studied by UV–Vis absorption and fluorescence experiments showed solvent-dependence, characteristic for donor-acceptor systems. The structural parameters exerted a strong influence on the light-emissive behavior, with the prevalence of intrinsic or intramolecular charge transfer fluorescence contingent on the donor-acceptor strength and polymer geometry. All polymers showed good electroactivity, supporting both electrons and holes transport. The exchange of Cbz with TPA proved to be an efficient tool with which to decrease the bandgap energy, while that of naphthyl(di)imide with bis(naphthylimide) was beneficial for fluorescence enhancement. This study may contribute to a deeper understanding of the physico-chemistry of electronic materials so as to make them more competitive in the newest energy-related or other optoelectronic devices. |
doi_str_mv | 10.3390/molecules27185761 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8bb4d6a24abd41dd941cd7a9015a58ba</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745962655</galeid><doaj_id>oai_doaj_org_article_8bb4d6a24abd41dd941cd7a9015a58ba</doaj_id><sourcerecordid>A745962655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-baefe05d64055326122919fc7c2208a182e841110981a466826f685be918b8e73</originalsourceid><addsrcrecordid>eNplks9u1DAQxiMEomXhAbhF4sJli-3Yjn1BqpZ_lYraw3K2HHuSeJXYwXGKtidegBNvyJPg7laIgnywNfObz9_YUxQvMTqrKonejGEAswwwkxoLVnP8qDjFlKB1hah8_Nf5pHg2zzuECKaYPS1OKo4ppbI-LX5ch2Hv9dSnfj-40Vn49f3n-W0YIfXOw1xugk_aeee7chvd1IPfD3rMqTLEcqNjo2-zi_JzcJBc5r-51JfbxYMtr6YUIDtMMXhnyusYJogHKPUxLF2fqw4N6Fi-g9l1_nnxpNXDDC_u91Xx5cP77ebT-vLq48Xm_HJtGJJp3WhoATHLKWKsIhwTIrFsTW0IQUJjQUBQjDGSAmvKuSC85YI1ILFoBNTVqrg46tqgd2qKbtRxr4J26hAIsVM6OzUDKNE01HJNqG4sxdZKio2ttUSYaSYanbXeHrWmpRnBGvAp6uGB6MOMd73qwo2SDFFCURZ4fS8Qw9cF5qRGNxsYBu0hLLPKn1vz3B-lGX31D7oLS_T5qe4ozhFCXGbq7Eh1OjfgfBvyvSYvC6MzwUPrcvy8pkxywvMLrgp8LDAxzHOE9o97jNTdpKn_Jq36DbUty88</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716600069</pqid></control><display><type>article</type><title>Polynaphthylimide–Azomethines Containing Triphenylamine or Carbazole Moieties with Tuned Optoelectronic Properties through Molecular Design</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Soroceanu, Marius ; Constantin, Catalin-Paul ; Damaceanu, Mariana-Dana</creator><creatorcontrib>Soroceanu, Marius ; Constantin, Catalin-Paul ; Damaceanu, Mariana-Dana</creatorcontrib><description>Polyazomethines containing electron-donor triphenylamine (TPA) or carbazole (Cbz) and electron-acceptor naphthyl(di)imide were synthesized and investigated with regard to thermal, optical and electronic features, with a focus on their modulation by molecular design. The polycondesation of an imido-based diamine with a Cbz- or TPA-based dialdehyde led to donor-acceptor polymers with good thermostability, up to 318 °C. These displayed good solubility in organic solvents, which enabled easy polymer processability in thin films with different molecular assemblies. The molecular order improved the charge carrier’s mobility, with a direct impact on the bandgap energy. The optical properties studied by UV–Vis absorption and fluorescence experiments showed solvent-dependence, characteristic for donor-acceptor systems. The structural parameters exerted a strong influence on the light-emissive behavior, with the prevalence of intrinsic or intramolecular charge transfer fluorescence contingent on the donor-acceptor strength and polymer geometry. All polymers showed good electroactivity, supporting both electrons and holes transport. The exchange of Cbz with TPA proved to be an efficient tool with which to decrease the bandgap energy, while that of naphthyl(di)imide with bis(naphthylimide) was beneficial for fluorescence enhancement. This study may contribute to a deeper understanding of the physico-chemistry of electronic materials so as to make them more competitive in the newest energy-related or other optoelectronic devices.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules27185761</identifier><identifier>PMID: 36144497</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atomic properties ; bandgap energy ; Carbazole ; Carbazoles ; Charge transfer ; Current carriers ; Design and construction ; Diamines ; Electroactivity ; Electronic materials ; Electrons ; Energy ; Fluorescence ; Glass substrates ; Investigations ; Materials ; naphthylimide ; Nitrogen ; Optical properties ; opto-electronic behavior ; Optoelectronic devices ; Organic solvents ; Photovoltaic cells ; Physicochemical properties ; Polyazomethines ; Polymer films ; Polymers ; Solvents ; Testing ; Thermal properties ; Thermal stability ; Thin films ; Transistors ; triphenylamine</subject><ispartof>Molecules (Basel, Switzerland), 2022-09, Vol.27 (18), p.5761</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-baefe05d64055326122919fc7c2208a182e841110981a466826f685be918b8e73</citedby><cites>FETCH-LOGICAL-c509t-baefe05d64055326122919fc7c2208a182e841110981a466826f685be918b8e73</cites><orcidid>0000-0001-5074-3804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716600069/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716600069?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Soroceanu, Marius</creatorcontrib><creatorcontrib>Constantin, Catalin-Paul</creatorcontrib><creatorcontrib>Damaceanu, Mariana-Dana</creatorcontrib><title>Polynaphthylimide–Azomethines Containing Triphenylamine or Carbazole Moieties with Tuned Optoelectronic Properties through Molecular Design</title><title>Molecules (Basel, Switzerland)</title><description>Polyazomethines containing electron-donor triphenylamine (TPA) or carbazole (Cbz) and electron-acceptor naphthyl(di)imide were synthesized and investigated with regard to thermal, optical and electronic features, with a focus on their modulation by molecular design. The polycondesation of an imido-based diamine with a Cbz- or TPA-based dialdehyde led to donor-acceptor polymers with good thermostability, up to 318 °C. These displayed good solubility in organic solvents, which enabled easy polymer processability in thin films with different molecular assemblies. The molecular order improved the charge carrier’s mobility, with a direct impact on the bandgap energy. The optical properties studied by UV–Vis absorption and fluorescence experiments showed solvent-dependence, characteristic for donor-acceptor systems. The structural parameters exerted a strong influence on the light-emissive behavior, with the prevalence of intrinsic or intramolecular charge transfer fluorescence contingent on the donor-acceptor strength and polymer geometry. All polymers showed good electroactivity, supporting both electrons and holes transport. The exchange of Cbz with TPA proved to be an efficient tool with which to decrease the bandgap energy, while that of naphthyl(di)imide with bis(naphthylimide) was beneficial for fluorescence enhancement. This study may contribute to a deeper understanding of the physico-chemistry of electronic materials so as to make them more competitive in the newest energy-related or other optoelectronic devices.</description><subject>Atomic properties</subject><subject>bandgap energy</subject><subject>Carbazole</subject><subject>Carbazoles</subject><subject>Charge transfer</subject><subject>Current carriers</subject><subject>Design and construction</subject><subject>Diamines</subject><subject>Electroactivity</subject><subject>Electronic materials</subject><subject>Electrons</subject><subject>Energy</subject><subject>Fluorescence</subject><subject>Glass substrates</subject><subject>Investigations</subject><subject>Materials</subject><subject>naphthylimide</subject><subject>Nitrogen</subject><subject>Optical properties</subject><subject>opto-electronic behavior</subject><subject>Optoelectronic devices</subject><subject>Organic solvents</subject><subject>Photovoltaic cells</subject><subject>Physicochemical properties</subject><subject>Polyazomethines</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Solvents</subject><subject>Testing</subject><subject>Thermal properties</subject><subject>Thermal stability</subject><subject>Thin films</subject><subject>Transistors</subject><subject>triphenylamine</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplks9u1DAQxiMEomXhAbhF4sJli-3Yjn1BqpZ_lYraw3K2HHuSeJXYwXGKtidegBNvyJPg7laIgnywNfObz9_YUxQvMTqrKonejGEAswwwkxoLVnP8qDjFlKB1hah8_Nf5pHg2zzuECKaYPS1OKo4ppbI-LX5ch2Hv9dSnfj-40Vn49f3n-W0YIfXOw1xugk_aeee7chvd1IPfD3rMqTLEcqNjo2-zi_JzcJBc5r-51JfbxYMtr6YUIDtMMXhnyusYJogHKPUxLF2fqw4N6Fi-g9l1_nnxpNXDDC_u91Xx5cP77ebT-vLq48Xm_HJtGJJp3WhoATHLKWKsIhwTIrFsTW0IQUJjQUBQjDGSAmvKuSC85YI1ILFoBNTVqrg46tqgd2qKbtRxr4J26hAIsVM6OzUDKNE01HJNqG4sxdZKio2ttUSYaSYanbXeHrWmpRnBGvAp6uGB6MOMd73qwo2SDFFCURZ4fS8Qw9cF5qRGNxsYBu0hLLPKn1vz3B-lGX31D7oLS_T5qe4ozhFCXGbq7Eh1OjfgfBvyvSYvC6MzwUPrcvy8pkxywvMLrgp8LDAxzHOE9o97jNTdpKn_Jq36DbUty88</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Soroceanu, Marius</creator><creator>Constantin, Catalin-Paul</creator><creator>Damaceanu, Mariana-Dana</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5074-3804</orcidid></search><sort><creationdate>20220901</creationdate><title>Polynaphthylimide–Azomethines Containing Triphenylamine or Carbazole Moieties with Tuned Optoelectronic Properties through Molecular Design</title><author>Soroceanu, Marius ; Constantin, Catalin-Paul ; Damaceanu, Mariana-Dana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-baefe05d64055326122919fc7c2208a182e841110981a466826f685be918b8e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic properties</topic><topic>bandgap energy</topic><topic>Carbazole</topic><topic>Carbazoles</topic><topic>Charge transfer</topic><topic>Current carriers</topic><topic>Design and construction</topic><topic>Diamines</topic><topic>Electroactivity</topic><topic>Electronic materials</topic><topic>Electrons</topic><topic>Energy</topic><topic>Fluorescence</topic><topic>Glass substrates</topic><topic>Investigations</topic><topic>Materials</topic><topic>naphthylimide</topic><topic>Nitrogen</topic><topic>Optical properties</topic><topic>opto-electronic behavior</topic><topic>Optoelectronic devices</topic><topic>Organic solvents</topic><topic>Photovoltaic cells</topic><topic>Physicochemical properties</topic><topic>Polyazomethines</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Solvents</topic><topic>Testing</topic><topic>Thermal properties</topic><topic>Thermal stability</topic><topic>Thin films</topic><topic>Transistors</topic><topic>triphenylamine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soroceanu, Marius</creatorcontrib><creatorcontrib>Constantin, Catalin-Paul</creatorcontrib><creatorcontrib>Damaceanu, Mariana-Dana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soroceanu, Marius</au><au>Constantin, Catalin-Paul</au><au>Damaceanu, Mariana-Dana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynaphthylimide–Azomethines Containing Triphenylamine or Carbazole Moieties with Tuned Optoelectronic Properties through Molecular Design</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>27</volume><issue>18</issue><spage>5761</spage><pages>5761-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Polyazomethines containing electron-donor triphenylamine (TPA) or carbazole (Cbz) and electron-acceptor naphthyl(di)imide were synthesized and investigated with regard to thermal, optical and electronic features, with a focus on their modulation by molecular design. The polycondesation of an imido-based diamine with a Cbz- or TPA-based dialdehyde led to donor-acceptor polymers with good thermostability, up to 318 °C. These displayed good solubility in organic solvents, which enabled easy polymer processability in thin films with different molecular assemblies. The molecular order improved the charge carrier’s mobility, with a direct impact on the bandgap energy. The optical properties studied by UV–Vis absorption and fluorescence experiments showed solvent-dependence, characteristic for donor-acceptor systems. The structural parameters exerted a strong influence on the light-emissive behavior, with the prevalence of intrinsic or intramolecular charge transfer fluorescence contingent on the donor-acceptor strength and polymer geometry. All polymers showed good electroactivity, supporting both electrons and holes transport. The exchange of Cbz with TPA proved to be an efficient tool with which to decrease the bandgap energy, while that of naphthyl(di)imide with bis(naphthylimide) was beneficial for fluorescence enhancement. This study may contribute to a deeper understanding of the physico-chemistry of electronic materials so as to make them more competitive in the newest energy-related or other optoelectronic devices.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36144497</pmid><doi>10.3390/molecules27185761</doi><orcidid>https://orcid.org/0000-0001-5074-3804</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2022-09, Vol.27 (18), p.5761 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8bb4d6a24abd41dd941cd7a9015a58ba |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Atomic properties bandgap energy Carbazole Carbazoles Charge transfer Current carriers Design and construction Diamines Electroactivity Electronic materials Electrons Energy Fluorescence Glass substrates Investigations Materials naphthylimide Nitrogen Optical properties opto-electronic behavior Optoelectronic devices Organic solvents Photovoltaic cells Physicochemical properties Polyazomethines Polymer films Polymers Solvents Testing Thermal properties Thermal stability Thin films Transistors triphenylamine |
title | Polynaphthylimide–Azomethines Containing Triphenylamine or Carbazole Moieties with Tuned Optoelectronic Properties through Molecular Design |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A16%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynaphthylimide%E2%80%93Azomethines%20Containing%20Triphenylamine%20or%20Carbazole%20Moieties%20with%20Tuned%20Optoelectronic%20Properties%20through%20Molecular%20Design&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Soroceanu,%20Marius&rft.date=2022-09-01&rft.volume=27&rft.issue=18&rft.spage=5761&rft.pages=5761-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules27185761&rft_dat=%3Cgale_doaj_%3EA745962655%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-baefe05d64055326122919fc7c2208a182e841110981a466826f685be918b8e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716600069&rft_id=info:pmid/36144497&rft_galeid=A745962655&rfr_iscdi=true |