Loading…

Functionalized Magnesium Phosphate Cement Induces In Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate

Bone defect repair poses significant challenges in orthopedics, thereby increasing the demand for bone substitutes. Magnesium phosphate cements (MPCs) are widely used for bone defect repair because of their excellent mechanical properties and biodegradability. However, high crystallinity and uncontr...

Full description

Saved in:
Bibliographic Details
Published in:Biomedicines 2024-01, Vol.12 (1), p.74
Main Authors: Gong, Changtian, Yang, Jian, Zhang, Xiping, Wei, Zhun, Wang, Xingyu, Huang, Xinghan, Yu, Ling, Guo, Weichun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c463t-f95435a9ea56d97445acde8c05849697ed857f152bc83c3c86bb0c6df2f1df8f3
container_end_page
container_issue 1
container_start_page 74
container_title Biomedicines
container_volume 12
creator Gong, Changtian
Yang, Jian
Zhang, Xiping
Wei, Zhun
Wang, Xingyu
Huang, Xinghan
Yu, Ling
Guo, Weichun
description Bone defect repair poses significant challenges in orthopedics, thereby increasing the demand for bone substitutes. Magnesium phosphate cements (MPCs) are widely used for bone defect repair because of their excellent mechanical properties and biodegradability. However, high crystallinity and uncontrolled magnesium ion (Mg ) release limit the surface bioactivity of MPCs in bone regeneration. Here, we fabricate chondroitin sulfate (CS) as a surface coating via the lyophilization method, namely CMPC. We find that the CS coating is uniformly distributed and improves the mechanical properties of MPC through anionic electrostatic adsorption, while mediating degradation-related controlled ion release of Mg . Using a combination of in vitro and in vivo analyses, we show that the CS coating maintained cytocompatibility while increasing the cell adhesion area of MC3T3-E1s. Furthermore, we display accelerated osteogenesis and angiogenesis of CMPC, which are related to appropriate ion concentration of Mg . Our findings reveal that the preparation of a lyophilized CS coating is an effective method to promote surface bioactivity and mediate Mg concentration dependent osteogenesis and angiogenesis, which have great potential in bone regeneration.
doi_str_mv 10.3390/biomedicines12010074
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8bbd5a1d6e7147e69a64c2b6f952cd42</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780872205</galeid><doaj_id>oai_doaj_org_article_8bbd5a1d6e7147e69a64c2b6f952cd42</doaj_id><sourcerecordid>A780872205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-f95435a9ea56d97445acde8c05849697ed857f152bc83c3c86bb0c6df2f1df8f3</originalsourceid><addsrcrecordid>eNptkttuEzEQhlcIRKvSN0BoJW64SfH5cFmiFiIFgShwu_La48TRZh3sNVJ5BJ4aJynloNoXY3n-_xsfpmmeY3RBqUav-xC34IINI2RMEEZIskfNKSFEzjTi-vFf65PmPOcNqkNjqjB72pxQRTjHipw2P6_LaKcQRzOEH-Da92ZVkaFs24_rmHdrM0E7hy2MU7sYXbGQa2xvwlTarybbMph08L2JI7SfYAUjJLPntd-DaW9K8sZCu7yNu3WoFY6p6Nv5Oo4uxTCFSiuDr3WeNU-8GTKc38Wz5sv11ef5u9nyw9vF_HI5s0zQaeY1Z5QbDYYLpyVj3FgHyiKumBZaglNcesxJbxW11CrR98gK54nHzitPz5rFkeui2XS7FLYm3XbRhO6wEdOqM2kKdoBO9b3jBjsBEjMJQhvBLOlFPQOxjpHKenVk7VL8ViBP3TZkC8NgRogld0RjqYQQnFfpy_-km1hSffeDSnElGWV_VCtT64fRxykZu4d2l1IhJQlBe9bFA6o6HWyDrV_hQ93_x8COBptizgn8_b0x6vYd1T3UUdX24u7Mpa_Ze9Pv_qG_AEAYyrU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918587434</pqid></control><display><type>article</type><title>Functionalized Magnesium Phosphate Cement Induces In Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Gong, Changtian ; Yang, Jian ; Zhang, Xiping ; Wei, Zhun ; Wang, Xingyu ; Huang, Xinghan ; Yu, Ling ; Guo, Weichun</creator><creatorcontrib>Gong, Changtian ; Yang, Jian ; Zhang, Xiping ; Wei, Zhun ; Wang, Xingyu ; Huang, Xinghan ; Yu, Ling ; Guo, Weichun</creatorcontrib><description>Bone defect repair poses significant challenges in orthopedics, thereby increasing the demand for bone substitutes. Magnesium phosphate cements (MPCs) are widely used for bone defect repair because of their excellent mechanical properties and biodegradability. However, high crystallinity and uncontrolled magnesium ion (Mg ) release limit the surface bioactivity of MPCs in bone regeneration. Here, we fabricate chondroitin sulfate (CS) as a surface coating via the lyophilization method, namely CMPC. We find that the CS coating is uniformly distributed and improves the mechanical properties of MPC through anionic electrostatic adsorption, while mediating degradation-related controlled ion release of Mg . Using a combination of in vitro and in vivo analyses, we show that the CS coating maintained cytocompatibility while increasing the cell adhesion area of MC3T3-E1s. Furthermore, we display accelerated osteogenesis and angiogenesis of CMPC, which are related to appropriate ion concentration of Mg . Our findings reveal that the preparation of a lyophilized CS coating is an effective method to promote surface bioactivity and mediate Mg concentration dependent osteogenesis and angiogenesis, which have great potential in bone regeneration.</description><identifier>ISSN: 2227-9059</identifier><identifier>EISSN: 2227-9059</identifier><identifier>DOI: 10.3390/biomedicines12010074</identifier><identifier>PMID: 38255182</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Angiogenesis ; Biocompatibility ; Biodegradability ; Biological activity ; Bone biomaterials ; Bone growth ; Cell adhesion ; Chondroitin sulfate ; Coatings ; Electron microscopes ; Freeze drying ; k-struvite ; Magnesium ; magnesium phosphate cement ; Mechanical properties ; Methyl methacrylate ; Morphology ; Osteogenesis ; Phosphates ; Potassium ; Regeneration ; Sulfates</subject><ispartof>Biomedicines, 2024-01, Vol.12 (1), p.74</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c463t-f95435a9ea56d97445acde8c05849697ed857f152bc83c3c86bb0c6df2f1df8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2918587434/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918587434?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38255182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Changtian</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Zhang, Xiping</creatorcontrib><creatorcontrib>Wei, Zhun</creatorcontrib><creatorcontrib>Wang, Xingyu</creatorcontrib><creatorcontrib>Huang, Xinghan</creatorcontrib><creatorcontrib>Yu, Ling</creatorcontrib><creatorcontrib>Guo, Weichun</creatorcontrib><title>Functionalized Magnesium Phosphate Cement Induces In Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate</title><title>Biomedicines</title><addtitle>Biomedicines</addtitle><description>Bone defect repair poses significant challenges in orthopedics, thereby increasing the demand for bone substitutes. Magnesium phosphate cements (MPCs) are widely used for bone defect repair because of their excellent mechanical properties and biodegradability. However, high crystallinity and uncontrolled magnesium ion (Mg ) release limit the surface bioactivity of MPCs in bone regeneration. Here, we fabricate chondroitin sulfate (CS) as a surface coating via the lyophilization method, namely CMPC. We find that the CS coating is uniformly distributed and improves the mechanical properties of MPC through anionic electrostatic adsorption, while mediating degradation-related controlled ion release of Mg . Using a combination of in vitro and in vivo analyses, we show that the CS coating maintained cytocompatibility while increasing the cell adhesion area of MC3T3-E1s. Furthermore, we display accelerated osteogenesis and angiogenesis of CMPC, which are related to appropriate ion concentration of Mg . Our findings reveal that the preparation of a lyophilized CS coating is an effective method to promote surface bioactivity and mediate Mg concentration dependent osteogenesis and angiogenesis, which have great potential in bone regeneration.</description><subject>Angiogenesis</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biological activity</subject><subject>Bone biomaterials</subject><subject>Bone growth</subject><subject>Cell adhesion</subject><subject>Chondroitin sulfate</subject><subject>Coatings</subject><subject>Electron microscopes</subject><subject>Freeze drying</subject><subject>k-struvite</subject><subject>Magnesium</subject><subject>magnesium phosphate cement</subject><subject>Mechanical properties</subject><subject>Methyl methacrylate</subject><subject>Morphology</subject><subject>Osteogenesis</subject><subject>Phosphates</subject><subject>Potassium</subject><subject>Regeneration</subject><subject>Sulfates</subject><issn>2227-9059</issn><issn>2227-9059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkttuEzEQhlcIRKvSN0BoJW64SfH5cFmiFiIFgShwu_La48TRZh3sNVJ5BJ4aJynloNoXY3n-_xsfpmmeY3RBqUav-xC34IINI2RMEEZIskfNKSFEzjTi-vFf65PmPOcNqkNjqjB72pxQRTjHipw2P6_LaKcQRzOEH-Da92ZVkaFs24_rmHdrM0E7hy2MU7sYXbGQa2xvwlTarybbMph08L2JI7SfYAUjJLPntd-DaW9K8sZCu7yNu3WoFY6p6Nv5Oo4uxTCFSiuDr3WeNU-8GTKc38Wz5sv11ef5u9nyw9vF_HI5s0zQaeY1Z5QbDYYLpyVj3FgHyiKumBZaglNcesxJbxW11CrR98gK54nHzitPz5rFkeui2XS7FLYm3XbRhO6wEdOqM2kKdoBO9b3jBjsBEjMJQhvBLOlFPQOxjpHKenVk7VL8ViBP3TZkC8NgRogld0RjqYQQnFfpy_-km1hSffeDSnElGWV_VCtT64fRxykZu4d2l1IhJQlBe9bFA6o6HWyDrV_hQ93_x8COBptizgn8_b0x6vYd1T3UUdX24u7Mpa_Ze9Pv_qG_AEAYyrU</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Gong, Changtian</creator><creator>Yang, Jian</creator><creator>Zhang, Xiping</creator><creator>Wei, Zhun</creator><creator>Wang, Xingyu</creator><creator>Huang, Xinghan</creator><creator>Yu, Ling</creator><creator>Guo, Weichun</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20240101</creationdate><title>Functionalized Magnesium Phosphate Cement Induces In Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate</title><author>Gong, Changtian ; Yang, Jian ; Zhang, Xiping ; Wei, Zhun ; Wang, Xingyu ; Huang, Xinghan ; Yu, Ling ; Guo, Weichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-f95435a9ea56d97445acde8c05849697ed857f152bc83c3c86bb0c6df2f1df8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angiogenesis</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biological activity</topic><topic>Bone biomaterials</topic><topic>Bone growth</topic><topic>Cell adhesion</topic><topic>Chondroitin sulfate</topic><topic>Coatings</topic><topic>Electron microscopes</topic><topic>Freeze drying</topic><topic>k-struvite</topic><topic>Magnesium</topic><topic>magnesium phosphate cement</topic><topic>Mechanical properties</topic><topic>Methyl methacrylate</topic><topic>Morphology</topic><topic>Osteogenesis</topic><topic>Phosphates</topic><topic>Potassium</topic><topic>Regeneration</topic><topic>Sulfates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Changtian</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Zhang, Xiping</creatorcontrib><creatorcontrib>Wei, Zhun</creatorcontrib><creatorcontrib>Wang, Xingyu</creatorcontrib><creatorcontrib>Huang, Xinghan</creatorcontrib><creatorcontrib>Yu, Ling</creatorcontrib><creatorcontrib>Guo, Weichun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomedicines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Changtian</au><au>Yang, Jian</au><au>Zhang, Xiping</au><au>Wei, Zhun</au><au>Wang, Xingyu</au><au>Huang, Xinghan</au><au>Yu, Ling</au><au>Guo, Weichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionalized Magnesium Phosphate Cement Induces In Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate</atitle><jtitle>Biomedicines</jtitle><addtitle>Biomedicines</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>74</spage><pages>74-</pages><issn>2227-9059</issn><eissn>2227-9059</eissn><abstract>Bone defect repair poses significant challenges in orthopedics, thereby increasing the demand for bone substitutes. Magnesium phosphate cements (MPCs) are widely used for bone defect repair because of their excellent mechanical properties and biodegradability. However, high crystallinity and uncontrolled magnesium ion (Mg ) release limit the surface bioactivity of MPCs in bone regeneration. Here, we fabricate chondroitin sulfate (CS) as a surface coating via the lyophilization method, namely CMPC. We find that the CS coating is uniformly distributed and improves the mechanical properties of MPC through anionic electrostatic adsorption, while mediating degradation-related controlled ion release of Mg . Using a combination of in vitro and in vivo analyses, we show that the CS coating maintained cytocompatibility while increasing the cell adhesion area of MC3T3-E1s. Furthermore, we display accelerated osteogenesis and angiogenesis of CMPC, which are related to appropriate ion concentration of Mg . Our findings reveal that the preparation of a lyophilized CS coating is an effective method to promote surface bioactivity and mediate Mg concentration dependent osteogenesis and angiogenesis, which have great potential in bone regeneration.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38255182</pmid><doi>10.3390/biomedicines12010074</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9059
ispartof Biomedicines, 2024-01, Vol.12 (1), p.74
issn 2227-9059
2227-9059
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8bbd5a1d6e7147e69a64c2b6f952cd42
source Publicly Available Content Database; PubMed Central
subjects Angiogenesis
Biocompatibility
Biodegradability
Biological activity
Bone biomaterials
Bone growth
Cell adhesion
Chondroitin sulfate
Coatings
Electron microscopes
Freeze drying
k-struvite
Magnesium
magnesium phosphate cement
Mechanical properties
Methyl methacrylate
Morphology
Osteogenesis
Phosphates
Potassium
Regeneration
Sulfates
title Functionalized Magnesium Phosphate Cement Induces In Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionalized%20Magnesium%20Phosphate%20Cement%20Induces%20In%20Situ%20Vascularized%20Bone%20Regeneration%20via%20Surface%20Lyophilization%20of%20Chondroitin%20Sulfate&rft.jtitle=Biomedicines&rft.au=Gong,%20Changtian&rft.date=2024-01-01&rft.volume=12&rft.issue=1&rft.spage=74&rft.pages=74-&rft.issn=2227-9059&rft.eissn=2227-9059&rft_id=info:doi/10.3390/biomedicines12010074&rft_dat=%3Cgale_doaj_%3EA780872205%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-f95435a9ea56d97445acde8c05849697ed857f152bc83c3c86bb0c6df2f1df8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918587434&rft_id=info:pmid/38255182&rft_galeid=A780872205&rfr_iscdi=true