Loading…
Functionalized Magnesium Phosphate Cement Induces In Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate
Bone defect repair poses significant challenges in orthopedics, thereby increasing the demand for bone substitutes. Magnesium phosphate cements (MPCs) are widely used for bone defect repair because of their excellent mechanical properties and biodegradability. However, high crystallinity and uncontr...
Saved in:
Published in: | Biomedicines 2024-01, Vol.12 (1), p.74 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c463t-f95435a9ea56d97445acde8c05849697ed857f152bc83c3c86bb0c6df2f1df8f3 |
container_end_page | |
container_issue | 1 |
container_start_page | 74 |
container_title | Biomedicines |
container_volume | 12 |
creator | Gong, Changtian Yang, Jian Zhang, Xiping Wei, Zhun Wang, Xingyu Huang, Xinghan Yu, Ling Guo, Weichun |
description | Bone defect repair poses significant challenges in orthopedics, thereby increasing the demand for bone substitutes. Magnesium phosphate cements (MPCs) are widely used for bone defect repair because of their excellent mechanical properties and biodegradability. However, high crystallinity and uncontrolled magnesium ion (Mg
) release limit the surface bioactivity of MPCs in bone regeneration. Here, we fabricate chondroitin sulfate (CS) as a surface coating via the lyophilization method, namely CMPC. We find that the CS coating is uniformly distributed and improves the mechanical properties of MPC through anionic electrostatic adsorption, while mediating degradation-related controlled ion release of Mg
. Using a combination of in vitro and in vivo analyses, we show that the CS coating maintained cytocompatibility while increasing the cell adhesion area of MC3T3-E1s. Furthermore, we display accelerated osteogenesis and angiogenesis of CMPC, which are related to appropriate ion concentration of Mg
. Our findings reveal that the preparation of a lyophilized CS coating is an effective method to promote surface bioactivity and mediate Mg
concentration dependent osteogenesis and angiogenesis, which have great potential in bone regeneration. |
doi_str_mv | 10.3390/biomedicines12010074 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8bbd5a1d6e7147e69a64c2b6f952cd42</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780872205</galeid><doaj_id>oai_doaj_org_article_8bbd5a1d6e7147e69a64c2b6f952cd42</doaj_id><sourcerecordid>A780872205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-f95435a9ea56d97445acde8c05849697ed857f152bc83c3c86bb0c6df2f1df8f3</originalsourceid><addsrcrecordid>eNptkttuEzEQhlcIRKvSN0BoJW64SfH5cFmiFiIFgShwu_La48TRZh3sNVJ5BJ4aJynloNoXY3n-_xsfpmmeY3RBqUav-xC34IINI2RMEEZIskfNKSFEzjTi-vFf65PmPOcNqkNjqjB72pxQRTjHipw2P6_LaKcQRzOEH-Da92ZVkaFs24_rmHdrM0E7hy2MU7sYXbGQa2xvwlTarybbMph08L2JI7SfYAUjJLPntd-DaW9K8sZCu7yNu3WoFY6p6Nv5Oo4uxTCFSiuDr3WeNU-8GTKc38Wz5sv11ef5u9nyw9vF_HI5s0zQaeY1Z5QbDYYLpyVj3FgHyiKumBZaglNcesxJbxW11CrR98gK54nHzitPz5rFkeui2XS7FLYm3XbRhO6wEdOqM2kKdoBO9b3jBjsBEjMJQhvBLOlFPQOxjpHKenVk7VL8ViBP3TZkC8NgRogld0RjqYQQnFfpy_-km1hSffeDSnElGWV_VCtT64fRxykZu4d2l1IhJQlBe9bFA6o6HWyDrV_hQ93_x8COBptizgn8_b0x6vYd1T3UUdX24u7Mpa_Ze9Pv_qG_AEAYyrU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918587434</pqid></control><display><type>article</type><title>Functionalized Magnesium Phosphate Cement Induces In Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Gong, Changtian ; Yang, Jian ; Zhang, Xiping ; Wei, Zhun ; Wang, Xingyu ; Huang, Xinghan ; Yu, Ling ; Guo, Weichun</creator><creatorcontrib>Gong, Changtian ; Yang, Jian ; Zhang, Xiping ; Wei, Zhun ; Wang, Xingyu ; Huang, Xinghan ; Yu, Ling ; Guo, Weichun</creatorcontrib><description>Bone defect repair poses significant challenges in orthopedics, thereby increasing the demand for bone substitutes. Magnesium phosphate cements (MPCs) are widely used for bone defect repair because of their excellent mechanical properties and biodegradability. However, high crystallinity and uncontrolled magnesium ion (Mg
) release limit the surface bioactivity of MPCs in bone regeneration. Here, we fabricate chondroitin sulfate (CS) as a surface coating via the lyophilization method, namely CMPC. We find that the CS coating is uniformly distributed and improves the mechanical properties of MPC through anionic electrostatic adsorption, while mediating degradation-related controlled ion release of Mg
. Using a combination of in vitro and in vivo analyses, we show that the CS coating maintained cytocompatibility while increasing the cell adhesion area of MC3T3-E1s. Furthermore, we display accelerated osteogenesis and angiogenesis of CMPC, which are related to appropriate ion concentration of Mg
. Our findings reveal that the preparation of a lyophilized CS coating is an effective method to promote surface bioactivity and mediate Mg
concentration dependent osteogenesis and angiogenesis, which have great potential in bone regeneration.</description><identifier>ISSN: 2227-9059</identifier><identifier>EISSN: 2227-9059</identifier><identifier>DOI: 10.3390/biomedicines12010074</identifier><identifier>PMID: 38255182</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Angiogenesis ; Biocompatibility ; Biodegradability ; Biological activity ; Bone biomaterials ; Bone growth ; Cell adhesion ; Chondroitin sulfate ; Coatings ; Electron microscopes ; Freeze drying ; k-struvite ; Magnesium ; magnesium phosphate cement ; Mechanical properties ; Methyl methacrylate ; Morphology ; Osteogenesis ; Phosphates ; Potassium ; Regeneration ; Sulfates</subject><ispartof>Biomedicines, 2024-01, Vol.12 (1), p.74</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c463t-f95435a9ea56d97445acde8c05849697ed857f152bc83c3c86bb0c6df2f1df8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2918587434/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918587434?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38255182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Changtian</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Zhang, Xiping</creatorcontrib><creatorcontrib>Wei, Zhun</creatorcontrib><creatorcontrib>Wang, Xingyu</creatorcontrib><creatorcontrib>Huang, Xinghan</creatorcontrib><creatorcontrib>Yu, Ling</creatorcontrib><creatorcontrib>Guo, Weichun</creatorcontrib><title>Functionalized Magnesium Phosphate Cement Induces In Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate</title><title>Biomedicines</title><addtitle>Biomedicines</addtitle><description>Bone defect repair poses significant challenges in orthopedics, thereby increasing the demand for bone substitutes. Magnesium phosphate cements (MPCs) are widely used for bone defect repair because of their excellent mechanical properties and biodegradability. However, high crystallinity and uncontrolled magnesium ion (Mg
) release limit the surface bioactivity of MPCs in bone regeneration. Here, we fabricate chondroitin sulfate (CS) as a surface coating via the lyophilization method, namely CMPC. We find that the CS coating is uniformly distributed and improves the mechanical properties of MPC through anionic electrostatic adsorption, while mediating degradation-related controlled ion release of Mg
. Using a combination of in vitro and in vivo analyses, we show that the CS coating maintained cytocompatibility while increasing the cell adhesion area of MC3T3-E1s. Furthermore, we display accelerated osteogenesis and angiogenesis of CMPC, which are related to appropriate ion concentration of Mg
. Our findings reveal that the preparation of a lyophilized CS coating is an effective method to promote surface bioactivity and mediate Mg
concentration dependent osteogenesis and angiogenesis, which have great potential in bone regeneration.</description><subject>Angiogenesis</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biological activity</subject><subject>Bone biomaterials</subject><subject>Bone growth</subject><subject>Cell adhesion</subject><subject>Chondroitin sulfate</subject><subject>Coatings</subject><subject>Electron microscopes</subject><subject>Freeze drying</subject><subject>k-struvite</subject><subject>Magnesium</subject><subject>magnesium phosphate cement</subject><subject>Mechanical properties</subject><subject>Methyl methacrylate</subject><subject>Morphology</subject><subject>Osteogenesis</subject><subject>Phosphates</subject><subject>Potassium</subject><subject>Regeneration</subject><subject>Sulfates</subject><issn>2227-9059</issn><issn>2227-9059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkttuEzEQhlcIRKvSN0BoJW64SfH5cFmiFiIFgShwu_La48TRZh3sNVJ5BJ4aJynloNoXY3n-_xsfpmmeY3RBqUav-xC34IINI2RMEEZIskfNKSFEzjTi-vFf65PmPOcNqkNjqjB72pxQRTjHipw2P6_LaKcQRzOEH-Da92ZVkaFs24_rmHdrM0E7hy2MU7sYXbGQa2xvwlTarybbMph08L2JI7SfYAUjJLPntd-DaW9K8sZCu7yNu3WoFY6p6Nv5Oo4uxTCFSiuDr3WeNU-8GTKc38Wz5sv11ef5u9nyw9vF_HI5s0zQaeY1Z5QbDYYLpyVj3FgHyiKumBZaglNcesxJbxW11CrR98gK54nHzitPz5rFkeui2XS7FLYm3XbRhO6wEdOqM2kKdoBO9b3jBjsBEjMJQhvBLOlFPQOxjpHKenVk7VL8ViBP3TZkC8NgRogld0RjqYQQnFfpy_-km1hSffeDSnElGWV_VCtT64fRxykZu4d2l1IhJQlBe9bFA6o6HWyDrV_hQ93_x8COBptizgn8_b0x6vYd1T3UUdX24u7Mpa_Ze9Pv_qG_AEAYyrU</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Gong, Changtian</creator><creator>Yang, Jian</creator><creator>Zhang, Xiping</creator><creator>Wei, Zhun</creator><creator>Wang, Xingyu</creator><creator>Huang, Xinghan</creator><creator>Yu, Ling</creator><creator>Guo, Weichun</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20240101</creationdate><title>Functionalized Magnesium Phosphate Cement Induces In Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate</title><author>Gong, Changtian ; Yang, Jian ; Zhang, Xiping ; Wei, Zhun ; Wang, Xingyu ; Huang, Xinghan ; Yu, Ling ; Guo, Weichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-f95435a9ea56d97445acde8c05849697ed857f152bc83c3c86bb0c6df2f1df8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angiogenesis</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biological activity</topic><topic>Bone biomaterials</topic><topic>Bone growth</topic><topic>Cell adhesion</topic><topic>Chondroitin sulfate</topic><topic>Coatings</topic><topic>Electron microscopes</topic><topic>Freeze drying</topic><topic>k-struvite</topic><topic>Magnesium</topic><topic>magnesium phosphate cement</topic><topic>Mechanical properties</topic><topic>Methyl methacrylate</topic><topic>Morphology</topic><topic>Osteogenesis</topic><topic>Phosphates</topic><topic>Potassium</topic><topic>Regeneration</topic><topic>Sulfates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Changtian</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Zhang, Xiping</creatorcontrib><creatorcontrib>Wei, Zhun</creatorcontrib><creatorcontrib>Wang, Xingyu</creatorcontrib><creatorcontrib>Huang, Xinghan</creatorcontrib><creatorcontrib>Yu, Ling</creatorcontrib><creatorcontrib>Guo, Weichun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomedicines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Changtian</au><au>Yang, Jian</au><au>Zhang, Xiping</au><au>Wei, Zhun</au><au>Wang, Xingyu</au><au>Huang, Xinghan</au><au>Yu, Ling</au><au>Guo, Weichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionalized Magnesium Phosphate Cement Induces In Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate</atitle><jtitle>Biomedicines</jtitle><addtitle>Biomedicines</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>74</spage><pages>74-</pages><issn>2227-9059</issn><eissn>2227-9059</eissn><abstract>Bone defect repair poses significant challenges in orthopedics, thereby increasing the demand for bone substitutes. Magnesium phosphate cements (MPCs) are widely used for bone defect repair because of their excellent mechanical properties and biodegradability. However, high crystallinity and uncontrolled magnesium ion (Mg
) release limit the surface bioactivity of MPCs in bone regeneration. Here, we fabricate chondroitin sulfate (CS) as a surface coating via the lyophilization method, namely CMPC. We find that the CS coating is uniformly distributed and improves the mechanical properties of MPC through anionic electrostatic adsorption, while mediating degradation-related controlled ion release of Mg
. Using a combination of in vitro and in vivo analyses, we show that the CS coating maintained cytocompatibility while increasing the cell adhesion area of MC3T3-E1s. Furthermore, we display accelerated osteogenesis and angiogenesis of CMPC, which are related to appropriate ion concentration of Mg
. Our findings reveal that the preparation of a lyophilized CS coating is an effective method to promote surface bioactivity and mediate Mg
concentration dependent osteogenesis and angiogenesis, which have great potential in bone regeneration.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38255182</pmid><doi>10.3390/biomedicines12010074</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9059 |
ispartof | Biomedicines, 2024-01, Vol.12 (1), p.74 |
issn | 2227-9059 2227-9059 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8bbd5a1d6e7147e69a64c2b6f952cd42 |
source | Publicly Available Content Database; PubMed Central |
subjects | Angiogenesis Biocompatibility Biodegradability Biological activity Bone biomaterials Bone growth Cell adhesion Chondroitin sulfate Coatings Electron microscopes Freeze drying k-struvite Magnesium magnesium phosphate cement Mechanical properties Methyl methacrylate Morphology Osteogenesis Phosphates Potassium Regeneration Sulfates |
title | Functionalized Magnesium Phosphate Cement Induces In Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionalized%20Magnesium%20Phosphate%20Cement%20Induces%20In%20Situ%20Vascularized%20Bone%20Regeneration%20via%20Surface%20Lyophilization%20of%20Chondroitin%20Sulfate&rft.jtitle=Biomedicines&rft.au=Gong,%20Changtian&rft.date=2024-01-01&rft.volume=12&rft.issue=1&rft.spage=74&rft.pages=74-&rft.issn=2227-9059&rft.eissn=2227-9059&rft_id=info:doi/10.3390/biomedicines12010074&rft_dat=%3Cgale_doaj_%3EA780872205%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-f95435a9ea56d97445acde8c05849697ed857f152bc83c3c86bb0c6df2f1df8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918587434&rft_id=info:pmid/38255182&rft_galeid=A780872205&rfr_iscdi=true |