Loading…
Martensite Transformation Intergrain and Intragrain Autocatalysis in Fe-Ni alloys
This work presents a consolidated view of the autocatalysis, thermal and entropic effects in martensitic transformation of polycrystalline Fe-31wt%Ni-0.02wt%C, which has been a standard material for the investigation of fundamental aspects of the martensite transformation. The present work is based...
Saved in:
Published in: | Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2017-11, Vol.20 (6), p.1548-1553 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work presents a consolidated view of the autocatalysis, thermal and entropic effects in martensitic transformation of polycrystalline Fe-31wt%Ni-0.02wt%C, which has been a standard material for the investigation of fundamental aspects of the martensite transformation. The present work is based on the description of classical microstructure descriptors of the transformation and on generally accepted concepts regarding the martensitic transformation in iron base alloys. Present work agrees with the view that the autocatalysis is a means by which the martensite transformation promotes further nucleation and growth. Autocatalysis induces the nucleation and growth of secondary plates in addition to the relatively small number of primary nucleation sites and their corresponding primary plates. We demonstrate that autocatalysis can be factored out into intragrain and intergrain components. The analysis of these factors establishes that intragrain autocatalysis is athermal but intergrain autocatalysis possess an Arrhenius temperature dependence. The reasons for such a behavior are discussed in detail. |
---|---|
ISSN: | 1516-1439 1980-5373 1980-5373 |
DOI: | 10.1590/1980-5373-mr-2016-0880 |