Loading…
Detection and Identification of Pesticides in Fruits Coupling to an Au-Au Nanorod Array SERS Substrate and RF-1D-CNN Model Analysis
In this research, a method was developed for fabricating Au-Au nanorod array substrates through the deposition of large-area Au nanostructures on an Au nanorod array using a galvanic cell reaction. The incorporation of a granular structure enhanced both the number and intensity of surface-enhanced R...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2024-04, Vol.14 (8), p.717 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-6ff61b396f838cc5dddfa3264a4c983ed017ccc50518880ab4631fcac75064063 |
container_end_page | |
container_issue | 8 |
container_start_page | 717 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 14 |
creator | Sha, Pengxing Zhu, Chushu Wang, Tianran Dong, Peitao Wu, Xuezhong |
description | In this research, a method was developed for fabricating Au-Au nanorod array substrates through the deposition of large-area Au nanostructures on an Au nanorod array using a galvanic cell reaction. The incorporation of a granular structure enhanced both the number and intensity of surface-enhanced Raman scattering (SERS) hot spots on the substrate, thereby elevating the SERS performance beyond that of substrates composed solely of an Au nanorod. Calculations using the finite difference time domain method confirmed the generation of a strong electromagnetic field around the nanoparticles. Motivated by the electromotive force, Au ions in the chloroauric acid solution were reduced to form nanostructures on the nanorod array. The size and distribution density of these granular nanostructures could be modulated by varying the reaction time and the concentration of chloroauric acid. The resulting Au-Au nanorod array substrate exhibited an active, uniform, and reproducible SERS effect. With 1,2-bis(4-pyridyl)ethylene as the probe molecule, the detection sensitivity of the Au-Au nanorod array substrate was enhanced to 10
M, improving by five orders of magnitude over the substrate consisting only of an Au nanorod array. For a practical application, this substrate was utilized for the detection of pesticides, including thiram, thiabendazole, carbendazim, and phosmet, within the concentration range of 10
to 5 × 10
M. An analytical model combining a random forest and a one-dimensional convolutional neural network, referring to the important variable-one-dimensional convolutional neural network model, was developed for the precise identification of thiram. This approach demonstrated significant potential for biochemical sensing and rapid on-site identification. |
doi_str_mv | 10.3390/nano14080717 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8bd4cc8ce80f4355800739f995f45449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793558851</galeid><doaj_id>oai_doaj_org_article_8bd4cc8ce80f4355800739f995f45449</doaj_id><sourcerecordid>A793558851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-6ff61b396f838cc5dddfa3264a4c983ed017ccc50518880ab4631fcac75064063</originalsourceid><addsrcrecordid>eNpdkktvEzEUhUcIRKvSHWtkiQ0Lptjjx9grNEobiFQCamBtOX4ERxM7tWeQsuaPYyalSvHG1vHx53uublW9RvAKYwE_BBUiIpDDFrXPqvMGtqImQqDnJ-ez6jLnLSxLIMwpflmdYc4YbxA6r35f28HqwccAVDBgYWwYvPNaTVJ04JvNg9fe2Ax8APM0-iGDWRz3vQ8bMMTyDHRj3Y1gWWpJ0YAuJXUAq5u7FViN6zwkNdgJfjev0XU9Wy7Bl2hsD7qg-kP2-VX1wqk-28uH_aL6Mb_5Pvtc3379tJh1t7UmLR1q5hxDayyY45hrTY0xTuGGEUW04NgaiFpddEgR5xyqNWEYOa10SyEjkOGLanHkmqi2cp_8TqWDjMrLSYhpI1UqYXsr-doQrbm2HDqCKeUQtlg4IagjlBBRWB-PrP243lmjS9uS6p9An94E_1Nu4i-JEKSY0aYQ3j0QUrwfS5flzmdt-14FG8csMSStwKKhqFjf_mfdxjGV7k0uJkTLCSyuq6Nro0oCH1wsH5f4ytid1zFY54veFWjJwyfs--MDnWLOybrH8hGUf8dLno5Xsb85jfxo_jdM-A-TrMlG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046997840</pqid></control><display><type>article</type><title>Detection and Identification of Pesticides in Fruits Coupling to an Au-Au Nanorod Array SERS Substrate and RF-1D-CNN Model Analysis</title><source>PubMed Central(OpenAccess)</source><source>ProQuest - Publicly Available Content Database</source><creator>Sha, Pengxing ; Zhu, Chushu ; Wang, Tianran ; Dong, Peitao ; Wu, Xuezhong</creator><creatorcontrib>Sha, Pengxing ; Zhu, Chushu ; Wang, Tianran ; Dong, Peitao ; Wu, Xuezhong</creatorcontrib><description>In this research, a method was developed for fabricating Au-Au nanorod array substrates through the deposition of large-area Au nanostructures on an Au nanorod array using a galvanic cell reaction. The incorporation of a granular structure enhanced both the number and intensity of surface-enhanced Raman scattering (SERS) hot spots on the substrate, thereby elevating the SERS performance beyond that of substrates composed solely of an Au nanorod. Calculations using the finite difference time domain method confirmed the generation of a strong electromagnetic field around the nanoparticles. Motivated by the electromotive force, Au ions in the chloroauric acid solution were reduced to form nanostructures on the nanorod array. The size and distribution density of these granular nanostructures could be modulated by varying the reaction time and the concentration of chloroauric acid. The resulting Au-Au nanorod array substrate exhibited an active, uniform, and reproducible SERS effect. With 1,2-bis(4-pyridyl)ethylene as the probe molecule, the detection sensitivity of the Au-Au nanorod array substrate was enhanced to 10
M, improving by five orders of magnitude over the substrate consisting only of an Au nanorod array. For a practical application, this substrate was utilized for the detection of pesticides, including thiram, thiabendazole, carbendazim, and phosmet, within the concentration range of 10
to 5 × 10
M. An analytical model combining a random forest and a one-dimensional convolutional neural network, referring to the important variable-one-dimensional convolutional neural network model, was developed for the precise identification of thiram. This approach demonstrated significant potential for biochemical sensing and rapid on-site identification.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano14080717</identifier><identifier>PMID: 38668211</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>1D-CNN model analysis ; Algorithms ; Analysis ; Arrays ; Artificial neural networks ; Au–Au nanorod array ; Biocompatibility ; Carbendazim ; Chloroauric acid ; Electric potential ; Electrolytic cells ; Electromagnetic fields ; Electromotive forces ; Finite difference time domain method ; Food safety ; Fungicides ; galvanic cell reaction ; Gold ; Identification and classification ; Mathematical models ; Methods ; Nanoparticles ; Nanorods ; Nanostructure ; Neural networks ; pesticide ; Pesticides ; Properties ; Raman spectra ; Raman spectroscopy ; Reproducibility ; Simulation ; Spectrum analysis ; Structure ; Substrates ; surface-enhanced Raman scattering ; Thiabendazole ; Thiram</subject><ispartof>Nanomaterials (Basel, Switzerland), 2024-04, Vol.14 (8), p.717</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c475t-6ff61b396f838cc5dddfa3264a4c983ed017ccc50518880ab4631fcac75064063</cites><orcidid>0000-0002-8173-0819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3046997840/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3046997840?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38668211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sha, Pengxing</creatorcontrib><creatorcontrib>Zhu, Chushu</creatorcontrib><creatorcontrib>Wang, Tianran</creatorcontrib><creatorcontrib>Dong, Peitao</creatorcontrib><creatorcontrib>Wu, Xuezhong</creatorcontrib><title>Detection and Identification of Pesticides in Fruits Coupling to an Au-Au Nanorod Array SERS Substrate and RF-1D-CNN Model Analysis</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>In this research, a method was developed for fabricating Au-Au nanorod array substrates through the deposition of large-area Au nanostructures on an Au nanorod array using a galvanic cell reaction. The incorporation of a granular structure enhanced both the number and intensity of surface-enhanced Raman scattering (SERS) hot spots on the substrate, thereby elevating the SERS performance beyond that of substrates composed solely of an Au nanorod. Calculations using the finite difference time domain method confirmed the generation of a strong electromagnetic field around the nanoparticles. Motivated by the electromotive force, Au ions in the chloroauric acid solution were reduced to form nanostructures on the nanorod array. The size and distribution density of these granular nanostructures could be modulated by varying the reaction time and the concentration of chloroauric acid. The resulting Au-Au nanorod array substrate exhibited an active, uniform, and reproducible SERS effect. With 1,2-bis(4-pyridyl)ethylene as the probe molecule, the detection sensitivity of the Au-Au nanorod array substrate was enhanced to 10
M, improving by five orders of magnitude over the substrate consisting only of an Au nanorod array. For a practical application, this substrate was utilized for the detection of pesticides, including thiram, thiabendazole, carbendazim, and phosmet, within the concentration range of 10
to 5 × 10
M. An analytical model combining a random forest and a one-dimensional convolutional neural network, referring to the important variable-one-dimensional convolutional neural network model, was developed for the precise identification of thiram. This approach demonstrated significant potential for biochemical sensing and rapid on-site identification.</description><subject>1D-CNN model analysis</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Au–Au nanorod array</subject><subject>Biocompatibility</subject><subject>Carbendazim</subject><subject>Chloroauric acid</subject><subject>Electric potential</subject><subject>Electrolytic cells</subject><subject>Electromagnetic fields</subject><subject>Electromotive forces</subject><subject>Finite difference time domain method</subject><subject>Food safety</subject><subject>Fungicides</subject><subject>galvanic cell reaction</subject><subject>Gold</subject><subject>Identification and classification</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Neural networks</subject><subject>pesticide</subject><subject>Pesticides</subject><subject>Properties</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Reproducibility</subject><subject>Simulation</subject><subject>Spectrum analysis</subject><subject>Structure</subject><subject>Substrates</subject><subject>surface-enhanced Raman scattering</subject><subject>Thiabendazole</subject><subject>Thiram</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvEzEUhUcIRKvSHWtkiQ0Lptjjx9grNEobiFQCamBtOX4ERxM7tWeQsuaPYyalSvHG1vHx53uublW9RvAKYwE_BBUiIpDDFrXPqvMGtqImQqDnJ-ez6jLnLSxLIMwpflmdYc4YbxA6r35f28HqwccAVDBgYWwYvPNaTVJ04JvNg9fe2Ax8APM0-iGDWRz3vQ8bMMTyDHRj3Y1gWWpJ0YAuJXUAq5u7FViN6zwkNdgJfjev0XU9Wy7Bl2hsD7qg-kP2-VX1wqk-28uH_aL6Mb_5Pvtc3379tJh1t7UmLR1q5hxDayyY45hrTY0xTuGGEUW04NgaiFpddEgR5xyqNWEYOa10SyEjkOGLanHkmqi2cp_8TqWDjMrLSYhpI1UqYXsr-doQrbm2HDqCKeUQtlg4IagjlBBRWB-PrP243lmjS9uS6p9An94E_1Nu4i-JEKSY0aYQ3j0QUrwfS5flzmdt-14FG8csMSStwKKhqFjf_mfdxjGV7k0uJkTLCSyuq6Nro0oCH1wsH5f4ytid1zFY54veFWjJwyfs--MDnWLOybrH8hGUf8dLno5Xsb85jfxo_jdM-A-TrMlG</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>Sha, Pengxing</creator><creator>Zhu, Chushu</creator><creator>Wang, Tianran</creator><creator>Dong, Peitao</creator><creator>Wu, Xuezhong</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8173-0819</orcidid></search><sort><creationdate>20240419</creationdate><title>Detection and Identification of Pesticides in Fruits Coupling to an Au-Au Nanorod Array SERS Substrate and RF-1D-CNN Model Analysis</title><author>Sha, Pengxing ; Zhu, Chushu ; Wang, Tianran ; Dong, Peitao ; Wu, Xuezhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-6ff61b396f838cc5dddfa3264a4c983ed017ccc50518880ab4631fcac75064063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1D-CNN model analysis</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Au–Au nanorod array</topic><topic>Biocompatibility</topic><topic>Carbendazim</topic><topic>Chloroauric acid</topic><topic>Electric potential</topic><topic>Electrolytic cells</topic><topic>Electromagnetic fields</topic><topic>Electromotive forces</topic><topic>Finite difference time domain method</topic><topic>Food safety</topic><topic>Fungicides</topic><topic>galvanic cell reaction</topic><topic>Gold</topic><topic>Identification and classification</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Neural networks</topic><topic>pesticide</topic><topic>Pesticides</topic><topic>Properties</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Reproducibility</topic><topic>Simulation</topic><topic>Spectrum analysis</topic><topic>Structure</topic><topic>Substrates</topic><topic>surface-enhanced Raman scattering</topic><topic>Thiabendazole</topic><topic>Thiram</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sha, Pengxing</creatorcontrib><creatorcontrib>Zhu, Chushu</creatorcontrib><creatorcontrib>Wang, Tianran</creatorcontrib><creatorcontrib>Dong, Peitao</creatorcontrib><creatorcontrib>Wu, Xuezhong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sha, Pengxing</au><au>Zhu, Chushu</au><au>Wang, Tianran</au><au>Dong, Peitao</au><au>Wu, Xuezhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Identification of Pesticides in Fruits Coupling to an Au-Au Nanorod Array SERS Substrate and RF-1D-CNN Model Analysis</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2024-04-19</date><risdate>2024</risdate><volume>14</volume><issue>8</issue><spage>717</spage><pages>717-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>In this research, a method was developed for fabricating Au-Au nanorod array substrates through the deposition of large-area Au nanostructures on an Au nanorod array using a galvanic cell reaction. The incorporation of a granular structure enhanced both the number and intensity of surface-enhanced Raman scattering (SERS) hot spots on the substrate, thereby elevating the SERS performance beyond that of substrates composed solely of an Au nanorod. Calculations using the finite difference time domain method confirmed the generation of a strong electromagnetic field around the nanoparticles. Motivated by the electromotive force, Au ions in the chloroauric acid solution were reduced to form nanostructures on the nanorod array. The size and distribution density of these granular nanostructures could be modulated by varying the reaction time and the concentration of chloroauric acid. The resulting Au-Au nanorod array substrate exhibited an active, uniform, and reproducible SERS effect. With 1,2-bis(4-pyridyl)ethylene as the probe molecule, the detection sensitivity of the Au-Au nanorod array substrate was enhanced to 10
M, improving by five orders of magnitude over the substrate consisting only of an Au nanorod array. For a practical application, this substrate was utilized for the detection of pesticides, including thiram, thiabendazole, carbendazim, and phosmet, within the concentration range of 10
to 5 × 10
M. An analytical model combining a random forest and a one-dimensional convolutional neural network, referring to the important variable-one-dimensional convolutional neural network model, was developed for the precise identification of thiram. This approach demonstrated significant potential for biochemical sensing and rapid on-site identification.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38668211</pmid><doi>10.3390/nano14080717</doi><orcidid>https://orcid.org/0000-0002-8173-0819</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2024-04, Vol.14 (8), p.717 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8bd4cc8ce80f4355800739f995f45449 |
source | PubMed Central(OpenAccess); ProQuest - Publicly Available Content Database |
subjects | 1D-CNN model analysis Algorithms Analysis Arrays Artificial neural networks Au–Au nanorod array Biocompatibility Carbendazim Chloroauric acid Electric potential Electrolytic cells Electromagnetic fields Electromotive forces Finite difference time domain method Food safety Fungicides galvanic cell reaction Gold Identification and classification Mathematical models Methods Nanoparticles Nanorods Nanostructure Neural networks pesticide Pesticides Properties Raman spectra Raman spectroscopy Reproducibility Simulation Spectrum analysis Structure Substrates surface-enhanced Raman scattering Thiabendazole Thiram |
title | Detection and Identification of Pesticides in Fruits Coupling to an Au-Au Nanorod Array SERS Substrate and RF-1D-CNN Model Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Identification%20of%20Pesticides%20in%20Fruits%20Coupling%20to%20an%20Au-Au%20Nanorod%20Array%20SERS%20Substrate%20and%20RF-1D-CNN%20Model%20Analysis&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Sha,%20Pengxing&rft.date=2024-04-19&rft.volume=14&rft.issue=8&rft.spage=717&rft.pages=717-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano14080717&rft_dat=%3Cgale_doaj_%3EA793558851%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-6ff61b396f838cc5dddfa3264a4c983ed017ccc50518880ab4631fcac75064063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3046997840&rft_id=info:pmid/38668211&rft_galeid=A793558851&rfr_iscdi=true |