Loading…

Combinatorial Polycation Synthesis and Causal Machine Learning Reveal Divergent Polymer Design Rules for Effective pDNA and Ribonucleoprotein Delivery

The development of polymers that can replace engineered viral vectors in clinical gene therapy has proven elusive despite the vast portfolios of multifunctional polymers generated by advances in polymer synthesis. Functional delivery of payloads such as plasmids (pDNA) and ribonucleoproteins (RNP) t...

Full description

Saved in:
Bibliographic Details
Published in:JACS Au 2022-02, Vol.2 (2), p.428-442
Main Authors: Kumar, Ramya, Le, Ngoc, Oviedo, Felipe, Brown, Mary E, Reineke, Theresa M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a491t-6ae52c77befe20569bb985b4586e64d5f9b604261160e2eaf64fed96072c40533
cites cdi_FETCH-LOGICAL-a491t-6ae52c77befe20569bb985b4586e64d5f9b604261160e2eaf64fed96072c40533
container_end_page 442
container_issue 2
container_start_page 428
container_title JACS Au
container_volume 2
creator Kumar, Ramya
Le, Ngoc
Oviedo, Felipe
Brown, Mary E
Reineke, Theresa M
description The development of polymers that can replace engineered viral vectors in clinical gene therapy has proven elusive despite the vast portfolios of multifunctional polymers generated by advances in polymer synthesis. Functional delivery of payloads such as plasmids (pDNA) and ribonucleoproteins (RNP) to various cellular populations and tissue types requires design precision. Herein, we systematically screen a combinatorially designed library of 43 well-defined polymers, ultimately identifying a lead polycationic vehicle (P38) for efficient pDNA delivery. Further, we demonstrate the versatility of P38 in codelivering spCas9 RNP and pDNA payloads to mediate homology-directed repair as well as in facilitating efficient pDNA delivery in ARPE-19 cells. P38 achieves nuclear import of pDNA and eludes lysosomal processing far more effectively than a structural analogue that does not deliver pDNA as efficiently. To reveal the physicochemical drivers of P38’s gene delivery performance, SHapley Additive exPlanations (SHAP) are computed for nine polyplex features, and a causal model is applied to evaluate the average treatment effect of the most important features selected by SHAP. Our machine learning interpretability and causal inference approach derives structure–function relationships underlying delivery efficiency, polyplex uptake, and cellular viability and probes the overlap in polymer design criteria between RNP and pDNA payloads. Together, combinatorial polymer synthesis, parallelized biological screening, and machine learning establish that pDNA delivery demands careful tuning of polycation protonation equilibria while RNP payloads are delivered most efficaciously by polymers that deprotonate cooperatively via hydrophobic interactions. These payload-specific design guidelines will inform further design of bespoke polymers for specific therapeutic contexts.
doi_str_mv 10.1021/jacsau.1c00467
format article
fullrecord <record><control><sourceid>proquest_N~.</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8befe52bbc734b25a29fe0201df8230d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8befe52bbc734b25a29fe0201df8230d</doaj_id><sourcerecordid>2636873492</sourcerecordid><originalsourceid>FETCH-LOGICAL-a491t-6ae52c77befe20569bb985b4586e64d5f9b604261160e2eaf64fed96072c40533</originalsourceid><addsrcrecordid>eNp1kk1rGzEQhpfS0oQ01x6LjqVgR9KutKtLIdhpE3A_cNuzkLQjW2ZXcqVdg_9If2_lj4bk0JPEzPs-MwxvUbwleEowJTcbZZIap8RgXPH6RXFJuSCTssbVyyf_i-I6pQ3GmDJSYo5fFxclo4wKQS-LP7PQa-fVEKJTHfoeur1Rgwse_dj7YQ3JJaR8i2ZqTLn_RZm184AWoKJ3foWWsINcn7sdxBX44UjoIaJ5tq48Wo4dJGRDRHfWghmyDm3nX2-P0KXTwY-mg7CNYQDns6s7kPZvildWdQmuz-9V8evT3c_Z_WTx7fPD7HYxUZUgw4QrYNTUtQYLFDMutBYN0xVrOPCqZVZojivKCeEYKCjLKwut4LimpsKsLK-KhxO3DWojt9H1Ku5lUE4eCyGupIqDyyvK5jCEUa1NXVaaMkWFBUwxaW1DS9xm1scTazvqHlqTrxFV9wz6vOPdWq7CTjZNIxjjGfD-DIjh9whpkL1LBrpOeQhjkpSXvMnDBc3S6UlqYkgpgn0cQ7A8ZEOesiHP2ciGd0-Xe5T_S0IWfDgJsk9uwhh9vvv_aH8B7-LHgA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636873492</pqid></control><display><type>article</type><title>Combinatorial Polycation Synthesis and Causal Machine Learning Reveal Divergent Polymer Design Rules for Effective pDNA and Ribonucleoprotein Delivery</title><source>American Chemical Society (ACS) Open Access</source><creator>Kumar, Ramya ; Le, Ngoc ; Oviedo, Felipe ; Brown, Mary E ; Reineke, Theresa M</creator><creatorcontrib>Kumar, Ramya ; Le, Ngoc ; Oviedo, Felipe ; Brown, Mary E ; Reineke, Theresa M</creatorcontrib><description>The development of polymers that can replace engineered viral vectors in clinical gene therapy has proven elusive despite the vast portfolios of multifunctional polymers generated by advances in polymer synthesis. Functional delivery of payloads such as plasmids (pDNA) and ribonucleoproteins (RNP) to various cellular populations and tissue types requires design precision. Herein, we systematically screen a combinatorially designed library of 43 well-defined polymers, ultimately identifying a lead polycationic vehicle (P38) for efficient pDNA delivery. Further, we demonstrate the versatility of P38 in codelivering spCas9 RNP and pDNA payloads to mediate homology-directed repair as well as in facilitating efficient pDNA delivery in ARPE-19 cells. P38 achieves nuclear import of pDNA and eludes lysosomal processing far more effectively than a structural analogue that does not deliver pDNA as efficiently. To reveal the physicochemical drivers of P38’s gene delivery performance, SHapley Additive exPlanations (SHAP) are computed for nine polyplex features, and a causal model is applied to evaluate the average treatment effect of the most important features selected by SHAP. Our machine learning interpretability and causal inference approach derives structure–function relationships underlying delivery efficiency, polyplex uptake, and cellular viability and probes the overlap in polymer design criteria between RNP and pDNA payloads. Together, combinatorial polymer synthesis, parallelized biological screening, and machine learning establish that pDNA delivery demands careful tuning of polycation protonation equilibria while RNP payloads are delivered most efficaciously by polymers that deprotonate cooperatively via hydrophobic interactions. These payload-specific design guidelines will inform further design of bespoke polymers for specific therapeutic contexts.</description><identifier>ISSN: 2691-3704</identifier><identifier>EISSN: 2691-3704</identifier><identifier>DOI: 10.1021/jacsau.1c00467</identifier><identifier>PMID: 35252992</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>JACS Au, 2022-02, Vol.2 (2), p.428-442</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society.</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a491t-6ae52c77befe20569bb985b4586e64d5f9b604261160e2eaf64fed96072c40533</citedby><cites>FETCH-LOGICAL-a491t-6ae52c77befe20569bb985b4586e64d5f9b604261160e2eaf64fed96072c40533</cites><orcidid>0000-0001-7020-3450 ; 0000-0002-8725-0023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacsau.1c00467$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacsau.1c00467$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27057,27901,27902,53766,53768,56737,56787</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1021/jacsau.1c00467$$EView_record_in_American_Chemical_Society$$FView_record_in_$$GAmerican_Chemical_Society</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35252992$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Ramya</creatorcontrib><creatorcontrib>Le, Ngoc</creatorcontrib><creatorcontrib>Oviedo, Felipe</creatorcontrib><creatorcontrib>Brown, Mary E</creatorcontrib><creatorcontrib>Reineke, Theresa M</creatorcontrib><title>Combinatorial Polycation Synthesis and Causal Machine Learning Reveal Divergent Polymer Design Rules for Effective pDNA and Ribonucleoprotein Delivery</title><title>JACS Au</title><addtitle>JACS Au</addtitle><description>The development of polymers that can replace engineered viral vectors in clinical gene therapy has proven elusive despite the vast portfolios of multifunctional polymers generated by advances in polymer synthesis. Functional delivery of payloads such as plasmids (pDNA) and ribonucleoproteins (RNP) to various cellular populations and tissue types requires design precision. Herein, we systematically screen a combinatorially designed library of 43 well-defined polymers, ultimately identifying a lead polycationic vehicle (P38) for efficient pDNA delivery. Further, we demonstrate the versatility of P38 in codelivering spCas9 RNP and pDNA payloads to mediate homology-directed repair as well as in facilitating efficient pDNA delivery in ARPE-19 cells. P38 achieves nuclear import of pDNA and eludes lysosomal processing far more effectively than a structural analogue that does not deliver pDNA as efficiently. To reveal the physicochemical drivers of P38’s gene delivery performance, SHapley Additive exPlanations (SHAP) are computed for nine polyplex features, and a causal model is applied to evaluate the average treatment effect of the most important features selected by SHAP. Our machine learning interpretability and causal inference approach derives structure–function relationships underlying delivery efficiency, polyplex uptake, and cellular viability and probes the overlap in polymer design criteria between RNP and pDNA payloads. Together, combinatorial polymer synthesis, parallelized biological screening, and machine learning establish that pDNA delivery demands careful tuning of polycation protonation equilibria while RNP payloads are delivered most efficaciously by polymers that deprotonate cooperatively via hydrophobic interactions. These payload-specific design guidelines will inform further design of bespoke polymers for specific therapeutic contexts.</description><issn>2691-3704</issn><issn>2691-3704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kk1rGzEQhpfS0oQ01x6LjqVgR9KutKtLIdhpE3A_cNuzkLQjW2ZXcqVdg_9If2_lj4bk0JPEzPs-MwxvUbwleEowJTcbZZIap8RgXPH6RXFJuSCTssbVyyf_i-I6pQ3GmDJSYo5fFxclo4wKQS-LP7PQa-fVEKJTHfoeur1Rgwse_dj7YQ3JJaR8i2ZqTLn_RZm184AWoKJ3foWWsINcn7sdxBX44UjoIaJ5tq48Wo4dJGRDRHfWghmyDm3nX2-P0KXTwY-mg7CNYQDns6s7kPZvildWdQmuz-9V8evT3c_Z_WTx7fPD7HYxUZUgw4QrYNTUtQYLFDMutBYN0xVrOPCqZVZojivKCeEYKCjLKwut4LimpsKsLK-KhxO3DWojt9H1Ku5lUE4eCyGupIqDyyvK5jCEUa1NXVaaMkWFBUwxaW1DS9xm1scTazvqHlqTrxFV9wz6vOPdWq7CTjZNIxjjGfD-DIjh9whpkL1LBrpOeQhjkpSXvMnDBc3S6UlqYkgpgn0cQ7A8ZEOesiHP2ciGd0-Xe5T_S0IWfDgJsk9uwhh9vvv_aH8B7-LHgA</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Kumar, Ramya</creator><creator>Le, Ngoc</creator><creator>Oviedo, Felipe</creator><creator>Brown, Mary E</creator><creator>Reineke, Theresa M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7020-3450</orcidid><orcidid>https://orcid.org/0000-0002-8725-0023</orcidid></search><sort><creationdate>20220228</creationdate><title>Combinatorial Polycation Synthesis and Causal Machine Learning Reveal Divergent Polymer Design Rules for Effective pDNA and Ribonucleoprotein Delivery</title><author>Kumar, Ramya ; Le, Ngoc ; Oviedo, Felipe ; Brown, Mary E ; Reineke, Theresa M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a491t-6ae52c77befe20569bb985b4586e64d5f9b604261160e2eaf64fed96072c40533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Ramya</creatorcontrib><creatorcontrib>Le, Ngoc</creatorcontrib><creatorcontrib>Oviedo, Felipe</creatorcontrib><creatorcontrib>Brown, Mary E</creatorcontrib><creatorcontrib>Reineke, Theresa M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>JACS Au</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumar, Ramya</au><au>Le, Ngoc</au><au>Oviedo, Felipe</au><au>Brown, Mary E</au><au>Reineke, Theresa M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combinatorial Polycation Synthesis and Causal Machine Learning Reveal Divergent Polymer Design Rules for Effective pDNA and Ribonucleoprotein Delivery</atitle><jtitle>JACS Au</jtitle><addtitle>JACS Au</addtitle><date>2022-02-28</date><risdate>2022</risdate><volume>2</volume><issue>2</issue><spage>428</spage><epage>442</epage><pages>428-442</pages><issn>2691-3704</issn><eissn>2691-3704</eissn><abstract>The development of polymers that can replace engineered viral vectors in clinical gene therapy has proven elusive despite the vast portfolios of multifunctional polymers generated by advances in polymer synthesis. Functional delivery of payloads such as plasmids (pDNA) and ribonucleoproteins (RNP) to various cellular populations and tissue types requires design precision. Herein, we systematically screen a combinatorially designed library of 43 well-defined polymers, ultimately identifying a lead polycationic vehicle (P38) for efficient pDNA delivery. Further, we demonstrate the versatility of P38 in codelivering spCas9 RNP and pDNA payloads to mediate homology-directed repair as well as in facilitating efficient pDNA delivery in ARPE-19 cells. P38 achieves nuclear import of pDNA and eludes lysosomal processing far more effectively than a structural analogue that does not deliver pDNA as efficiently. To reveal the physicochemical drivers of P38’s gene delivery performance, SHapley Additive exPlanations (SHAP) are computed for nine polyplex features, and a causal model is applied to evaluate the average treatment effect of the most important features selected by SHAP. Our machine learning interpretability and causal inference approach derives structure–function relationships underlying delivery efficiency, polyplex uptake, and cellular viability and probes the overlap in polymer design criteria between RNP and pDNA payloads. Together, combinatorial polymer synthesis, parallelized biological screening, and machine learning establish that pDNA delivery demands careful tuning of polycation protonation equilibria while RNP payloads are delivered most efficaciously by polymers that deprotonate cooperatively via hydrophobic interactions. These payload-specific design guidelines will inform further design of bespoke polymers for specific therapeutic contexts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35252992</pmid><doi>10.1021/jacsau.1c00467</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7020-3450</orcidid><orcidid>https://orcid.org/0000-0002-8725-0023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2691-3704
ispartof JACS Au, 2022-02, Vol.2 (2), p.428-442
issn 2691-3704
2691-3704
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8befe52bbc734b25a29fe0201df8230d
source American Chemical Society (ACS) Open Access
title Combinatorial Polycation Synthesis and Causal Machine Learning Reveal Divergent Polymer Design Rules for Effective pDNA and Ribonucleoprotein Delivery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_N~.&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combinatorial%20Polycation%20Synthesis%20and%20Causal%20Machine%20Learning%20Reveal%20Divergent%20Polymer%20Design%20Rules%20for%20Effective%20pDNA%20and%20Ribonucleoprotein%20Delivery&rft.jtitle=JACS%20Au&rft.au=Kumar,%20Ramya&rft.date=2022-02-28&rft.volume=2&rft.issue=2&rft.spage=428&rft.epage=442&rft.pages=428-442&rft.issn=2691-3704&rft.eissn=2691-3704&rft_id=info:doi/10.1021/jacsau.1c00467&rft_dat=%3Cproquest_N~.%3E2636873492%3C/proquest_N~.%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a491t-6ae52c77befe20569bb985b4586e64d5f9b604261160e2eaf64fed96072c40533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2636873492&rft_id=info:pmid/35252992&rfr_iscdi=true