Loading…

Natural convection of large Prandtl number fluids: A controversy answered by a new thermal lattice Boltzmann model

The purpose of this work is to deepen our understanding of natural convection with large Prandtl number fluids and to resolve some controversies in the previous publications. To achieve this purpose, a new thermal multiple-relaxation-time lattice Boltzmann model is proposed. Natural convection in a...

Full description

Saved in:
Bibliographic Details
Published in:Case studies in thermal engineering 2023-04, Vol.44, p.102827, Article 102827
Main Authors: Chen, Sheng, Luo, Kai H., Jain, Amit Kumar, Singh, Dharminder, McGlinchey, Don
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this work is to deepen our understanding of natural convection with large Prandtl number fluids and to resolve some controversies in the previous publications. To achieve this purpose, a new thermal multiple-relaxation-time lattice Boltzmann model is proposed. Natural convection in a square cavity, a benchmark test case, is investigated numerically using the new model. The Prandtl number is up to 100. For the first time, it is numerically observed that there are two critical Prandtl numbers in the natural convection, which will affect the correlation between the Nusselt number and Prandtl number critically. Three heat transfer characteristic ranges of natural convection are defined in this work, according to the two critical Prandtl numbers. In each range, the dominant heat transfer mechanism is different, which can solve a long-standing issue in the discipline of heat and mass transfer: completely opposing statements on the correlation between the Nusselt number and Prandtl number for natural convection, were published in the open literature. For the first time, this work reveals cause behind the controversial reports and provides the guidance for the future research.
ISSN:2214-157X
2214-157X
DOI:10.1016/j.csite.2023.102827