Loading…

A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1

Mechanosensitive Piezo1 and Piezo2 channels transduce various forms of mechanical forces into cellular signals that play vital roles in many important biological processes in vertebrate organisms. Besides mechanical forces, Piezo1 is selectively activated by micromolar concentrations of the small mo...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-10, Vol.10 (1), p.4503-10, Article 4503
Main Authors: Botello-Smith, Wesley M., Jiang, Wenjuan, Zhang, Han, Ozkan, Alper D., Lin, Yi-Chun, Pham, Christine N., Lacroix, Jérôme J., Luo, Yun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-ac2790ed1e431e23a25db09cc2b6372f49adbf1eba61ee1d19bbe7ed58e3a2573
cites cdi_FETCH-LOGICAL-c606t-ac2790ed1e431e23a25db09cc2b6372f49adbf1eba61ee1d19bbe7ed58e3a2573
container_end_page 10
container_issue 1
container_start_page 4503
container_title Nature communications
container_volume 10
creator Botello-Smith, Wesley M.
Jiang, Wenjuan
Zhang, Han
Ozkan, Alper D.
Lin, Yi-Chun
Pham, Christine N.
Lacroix, Jérôme J.
Luo, Yun
description Mechanosensitive Piezo1 and Piezo2 channels transduce various forms of mechanical forces into cellular signals that play vital roles in many important biological processes in vertebrate organisms. Besides mechanical forces, Piezo1 is selectively activated by micromolar concentrations of the small molecule Yoda1 through an unknown mechanism. Here, using a combination of all-atom molecular dynamics simulations, calcium imaging and electrophysiology, we identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain, approximately 40 Å away from the central pore. Our simulations further indicate that the presence of the agonist correlates with increased tension-induced motions of the Yoda1-bound subunit. Our results suggest a model wherein Yoda1 acts as a molecular wedge, facilitating force-induced conformational changes, effectively lowering the channel’s mechanical threshold for activation. The identification of an allosteric agonist binding site in Piezo1 channels will pave the way for the rational design of future Piezo modulators with clinical value. Besides mechanical forces, the mechanosensitive channel Piezo1 is activated by the small molecule Yoda1 through an unknown mechanism. Here, using molecular dynamics simulations, calcium imaging and electrophysiology, the authors identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain.
doi_str_mv 10.1038/s41467-019-12501-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8c1aeda44ea9466cae5d0b05d2bf2fe1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8c1aeda44ea9466cae5d0b05d2bf2fe1</doaj_id><sourcerecordid>2301445694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-ac2790ed1e431e23a25db09cc2b6372f49adbf1eba61ee1d19bbe7ed58e3a2573</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkuKxHSe5IFUVH5UqwQEOnKyxPdnNyomLna1Ufj3Opi0tB3zxaObxOx77LYrXwM6AifZ9kiBVUzHoKuA1gwqeFcecyRw0XDx_FB8VpyntWF6ig1bKl8WRgLrlLYPjAs_LkewWpyGNZR9iOW-pRDsPNzgPYSpDf8isTEg0pSHXqPw20O8A5ZKdyJfm9oClEb0vx-DJ7j2VP4NDeFW86NEnOr3bT4ofnz5-v_hSXX39fHlxflVZxdRcoeVNx8gBSQHEBfLaGdZZy40SDe9lh870QAYVEIGDzhhqyNUtLWwjTorLVdcF3OnrOIwYb3XAQR8SIW40xnmwnnRrAcmhlISdVMoi1Y4ZVjtuet4TZK0Pq9b13ozkLE1zRP9E9GllGrZ6E260ahpVc5kF3t0JxPBrT2nW45AseY8ThX3SXDCQslbdgr79B92FfZzyUy0UU9C0nGeKr5SNIaVI_cNlgOnFEHo1hM6G0AdD6GWMN4_HeDhy__0ZECuQcmnaUPzb-z-yfwBUZ8JE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300617822</pqid></control><display><type>article</type><title>A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Botello-Smith, Wesley M. ; Jiang, Wenjuan ; Zhang, Han ; Ozkan, Alper D. ; Lin, Yi-Chun ; Pham, Christine N. ; Lacroix, Jérôme J. ; Luo, Yun</creator><creatorcontrib>Botello-Smith, Wesley M. ; Jiang, Wenjuan ; Zhang, Han ; Ozkan, Alper D. ; Lin, Yi-Chun ; Pham, Christine N. ; Lacroix, Jérôme J. ; Luo, Yun</creatorcontrib><description>Mechanosensitive Piezo1 and Piezo2 channels transduce various forms of mechanical forces into cellular signals that play vital roles in many important biological processes in vertebrate organisms. Besides mechanical forces, Piezo1 is selectively activated by micromolar concentrations of the small molecule Yoda1 through an unknown mechanism. Here, using a combination of all-atom molecular dynamics simulations, calcium imaging and electrophysiology, we identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain, approximately 40 Å away from the central pore. Our simulations further indicate that the presence of the agonist correlates with increased tension-induced motions of the Yoda1-bound subunit. Our results suggest a model wherein Yoda1 acts as a molecular wedge, facilitating force-induced conformational changes, effectively lowering the channel’s mechanical threshold for activation. The identification of an allosteric agonist binding site in Piezo1 channels will pave the way for the rational design of future Piezo modulators with clinical value. Besides mechanical forces, the mechanosensitive channel Piezo1 is activated by the small molecule Yoda1 through an unknown mechanism. Here, using molecular dynamics simulations, calcium imaging and electrophysiology, the authors identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-12501-1</identifier><identifier>PMID: 31582801</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 14 ; 631/154/436/2387 ; 631/57/2266 ; 631/92/269 ; 9/74 ; Activation ; Agonists ; Allosteric properties ; Binding Sites ; Biological activity ; Calcium ; Calcium imaging ; Calcium signalling ; Channels ; Computer simulation ; Electrophysiology ; HEK293 Cells ; Humanities and Social Sciences ; Humans ; Intravital Microscopy - methods ; Ion Channel Gating - drug effects ; Ion Channels - agonists ; Ion Channels - genetics ; Ion Channels - metabolism ; Ligands ; Modulators ; Molecular dynamics ; Molecular Dynamics Simulation ; multidisciplinary ; Mutation ; Optical Imaging - methods ; Patch-Clamp Techniques ; Protein Binding ; Protein Domains ; Pyrazines - pharmacology ; Science ; Science (multidisciplinary) ; Signal processing ; Thiadiazoles - pharmacology ; Vertebrates</subject><ispartof>Nature communications, 2019-10, Vol.10 (1), p.4503-10, Article 4503</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-ac2790ed1e431e23a25db09cc2b6372f49adbf1eba61ee1d19bbe7ed58e3a2573</citedby><cites>FETCH-LOGICAL-c606t-ac2790ed1e431e23a25db09cc2b6372f49adbf1eba61ee1d19bbe7ed58e3a2573</cites><orcidid>0000-0002-6360-3875 ; 0000-0001-5687-0652 ; 0000-0003-3581-754X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2300617822/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2300617822?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31582801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Botello-Smith, Wesley M.</creatorcontrib><creatorcontrib>Jiang, Wenjuan</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Ozkan, Alper D.</creatorcontrib><creatorcontrib>Lin, Yi-Chun</creatorcontrib><creatorcontrib>Pham, Christine N.</creatorcontrib><creatorcontrib>Lacroix, Jérôme J.</creatorcontrib><creatorcontrib>Luo, Yun</creatorcontrib><title>A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Mechanosensitive Piezo1 and Piezo2 channels transduce various forms of mechanical forces into cellular signals that play vital roles in many important biological processes in vertebrate organisms. Besides mechanical forces, Piezo1 is selectively activated by micromolar concentrations of the small molecule Yoda1 through an unknown mechanism. Here, using a combination of all-atom molecular dynamics simulations, calcium imaging and electrophysiology, we identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain, approximately 40 Å away from the central pore. Our simulations further indicate that the presence of the agonist correlates with increased tension-induced motions of the Yoda1-bound subunit. Our results suggest a model wherein Yoda1 acts as a molecular wedge, facilitating force-induced conformational changes, effectively lowering the channel’s mechanical threshold for activation. The identification of an allosteric agonist binding site in Piezo1 channels will pave the way for the rational design of future Piezo modulators with clinical value. Besides mechanical forces, the mechanosensitive channel Piezo1 is activated by the small molecule Yoda1 through an unknown mechanism. Here, using molecular dynamics simulations, calcium imaging and electrophysiology, the authors identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain.</description><subject>119/118</subject><subject>14</subject><subject>631/154/436/2387</subject><subject>631/57/2266</subject><subject>631/92/269</subject><subject>9/74</subject><subject>Activation</subject><subject>Agonists</subject><subject>Allosteric properties</subject><subject>Binding Sites</subject><subject>Biological activity</subject><subject>Calcium</subject><subject>Calcium imaging</subject><subject>Calcium signalling</subject><subject>Channels</subject><subject>Computer simulation</subject><subject>Electrophysiology</subject><subject>HEK293 Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Intravital Microscopy - methods</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channels - agonists</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Ligands</subject><subject>Modulators</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Optical Imaging - methods</subject><subject>Patch-Clamp Techniques</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Pyrazines - pharmacology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal processing</subject><subject>Thiadiazoles - pharmacology</subject><subject>Vertebrates</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkuKxHSe5IFUVH5UqwQEOnKyxPdnNyomLna1Ufj3Opi0tB3zxaObxOx77LYrXwM6AifZ9kiBVUzHoKuA1gwqeFcecyRw0XDx_FB8VpyntWF6ig1bKl8WRgLrlLYPjAs_LkewWpyGNZR9iOW-pRDsPNzgPYSpDf8isTEg0pSHXqPw20O8A5ZKdyJfm9oClEb0vx-DJ7j2VP4NDeFW86NEnOr3bT4ofnz5-v_hSXX39fHlxflVZxdRcoeVNx8gBSQHEBfLaGdZZy40SDe9lh870QAYVEIGDzhhqyNUtLWwjTorLVdcF3OnrOIwYb3XAQR8SIW40xnmwnnRrAcmhlISdVMoi1Y4ZVjtuet4TZK0Pq9b13ozkLE1zRP9E9GllGrZ6E260ahpVc5kF3t0JxPBrT2nW45AseY8ThX3SXDCQslbdgr79B92FfZzyUy0UU9C0nGeKr5SNIaVI_cNlgOnFEHo1hM6G0AdD6GWMN4_HeDhy__0ZECuQcmnaUPzb-z-yfwBUZ8JE</recordid><startdate>20191003</startdate><enddate>20191003</enddate><creator>Botello-Smith, Wesley M.</creator><creator>Jiang, Wenjuan</creator><creator>Zhang, Han</creator><creator>Ozkan, Alper D.</creator><creator>Lin, Yi-Chun</creator><creator>Pham, Christine N.</creator><creator>Lacroix, Jérôme J.</creator><creator>Luo, Yun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6360-3875</orcidid><orcidid>https://orcid.org/0000-0001-5687-0652</orcidid><orcidid>https://orcid.org/0000-0003-3581-754X</orcidid></search><sort><creationdate>20191003</creationdate><title>A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1</title><author>Botello-Smith, Wesley M. ; Jiang, Wenjuan ; Zhang, Han ; Ozkan, Alper D. ; Lin, Yi-Chun ; Pham, Christine N. ; Lacroix, Jérôme J. ; Luo, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-ac2790ed1e431e23a25db09cc2b6372f49adbf1eba61ee1d19bbe7ed58e3a2573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>119/118</topic><topic>14</topic><topic>631/154/436/2387</topic><topic>631/57/2266</topic><topic>631/92/269</topic><topic>9/74</topic><topic>Activation</topic><topic>Agonists</topic><topic>Allosteric properties</topic><topic>Binding Sites</topic><topic>Biological activity</topic><topic>Calcium</topic><topic>Calcium imaging</topic><topic>Calcium signalling</topic><topic>Channels</topic><topic>Computer simulation</topic><topic>Electrophysiology</topic><topic>HEK293 Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Intravital Microscopy - methods</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channels - agonists</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Ligands</topic><topic>Modulators</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Optical Imaging - methods</topic><topic>Patch-Clamp Techniques</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Pyrazines - pharmacology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal processing</topic><topic>Thiadiazoles - pharmacology</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botello-Smith, Wesley M.</creatorcontrib><creatorcontrib>Jiang, Wenjuan</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Ozkan, Alper D.</creatorcontrib><creatorcontrib>Lin, Yi-Chun</creatorcontrib><creatorcontrib>Pham, Christine N.</creatorcontrib><creatorcontrib>Lacroix, Jérôme J.</creatorcontrib><creatorcontrib>Luo, Yun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botello-Smith, Wesley M.</au><au>Jiang, Wenjuan</au><au>Zhang, Han</au><au>Ozkan, Alper D.</au><au>Lin, Yi-Chun</au><au>Pham, Christine N.</au><au>Lacroix, Jérôme J.</au><au>Luo, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-10-03</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>4503</spage><epage>10</epage><pages>4503-10</pages><artnum>4503</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Mechanosensitive Piezo1 and Piezo2 channels transduce various forms of mechanical forces into cellular signals that play vital roles in many important biological processes in vertebrate organisms. Besides mechanical forces, Piezo1 is selectively activated by micromolar concentrations of the small molecule Yoda1 through an unknown mechanism. Here, using a combination of all-atom molecular dynamics simulations, calcium imaging and electrophysiology, we identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain, approximately 40 Å away from the central pore. Our simulations further indicate that the presence of the agonist correlates with increased tension-induced motions of the Yoda1-bound subunit. Our results suggest a model wherein Yoda1 acts as a molecular wedge, facilitating force-induced conformational changes, effectively lowering the channel’s mechanical threshold for activation. The identification of an allosteric agonist binding site in Piezo1 channels will pave the way for the rational design of future Piezo modulators with clinical value. Besides mechanical forces, the mechanosensitive channel Piezo1 is activated by the small molecule Yoda1 through an unknown mechanism. Here, using molecular dynamics simulations, calcium imaging and electrophysiology, the authors identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31582801</pmid><doi>10.1038/s41467-019-12501-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6360-3875</orcidid><orcidid>https://orcid.org/0000-0001-5687-0652</orcidid><orcidid>https://orcid.org/0000-0003-3581-754X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2019-10, Vol.10 (1), p.4503-10, Article 4503
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8c1aeda44ea9466cae5d0b05d2bf2fe1
source Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 119/118
14
631/154/436/2387
631/57/2266
631/92/269
9/74
Activation
Agonists
Allosteric properties
Binding Sites
Biological activity
Calcium
Calcium imaging
Calcium signalling
Channels
Computer simulation
Electrophysiology
HEK293 Cells
Humanities and Social Sciences
Humans
Intravital Microscopy - methods
Ion Channel Gating - drug effects
Ion Channels - agonists
Ion Channels - genetics
Ion Channels - metabolism
Ligands
Modulators
Molecular dynamics
Molecular Dynamics Simulation
multidisciplinary
Mutation
Optical Imaging - methods
Patch-Clamp Techniques
Protein Binding
Protein Domains
Pyrazines - pharmacology
Science
Science (multidisciplinary)
Signal processing
Thiadiazoles - pharmacology
Vertebrates
title A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanism%20for%20the%20activation%20of%20the%20mechanosensitive%20Piezo1%20channel%20by%20the%20small%20molecule%20Yoda1&rft.jtitle=Nature%20communications&rft.au=Botello-Smith,%20Wesley%20M.&rft.date=2019-10-03&rft.volume=10&rft.issue=1&rft.spage=4503&rft.epage=10&rft.pages=4503-10&rft.artnum=4503&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-12501-1&rft_dat=%3Cproquest_doaj_%3E2301445694%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-ac2790ed1e431e23a25db09cc2b6372f49adbf1eba61ee1d19bbe7ed58e3a2573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300617822&rft_id=info:pmid/31582801&rfr_iscdi=true