Loading…
A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1
Mechanosensitive Piezo1 and Piezo2 channels transduce various forms of mechanical forces into cellular signals that play vital roles in many important biological processes in vertebrate organisms. Besides mechanical forces, Piezo1 is selectively activated by micromolar concentrations of the small mo...
Saved in:
Published in: | Nature communications 2019-10, Vol.10 (1), p.4503-10, Article 4503 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c606t-ac2790ed1e431e23a25db09cc2b6372f49adbf1eba61ee1d19bbe7ed58e3a2573 |
---|---|
cites | cdi_FETCH-LOGICAL-c606t-ac2790ed1e431e23a25db09cc2b6372f49adbf1eba61ee1d19bbe7ed58e3a2573 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 4503 |
container_title | Nature communications |
container_volume | 10 |
creator | Botello-Smith, Wesley M. Jiang, Wenjuan Zhang, Han Ozkan, Alper D. Lin, Yi-Chun Pham, Christine N. Lacroix, Jérôme J. Luo, Yun |
description | Mechanosensitive Piezo1 and Piezo2 channels transduce various forms of mechanical forces into cellular signals that play vital roles in many important biological processes in vertebrate organisms. Besides mechanical forces, Piezo1 is selectively activated by micromolar concentrations of the small molecule Yoda1 through an unknown mechanism. Here, using a combination of all-atom molecular dynamics simulations, calcium imaging and electrophysiology, we identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain, approximately 40 Å away from the central pore. Our simulations further indicate that the presence of the agonist correlates with increased tension-induced motions of the Yoda1-bound subunit. Our results suggest a model wherein Yoda1 acts as a molecular wedge, facilitating force-induced conformational changes, effectively lowering the channel’s mechanical threshold for activation. The identification of an allosteric agonist binding site in Piezo1 channels will pave the way for the rational design of future Piezo modulators with clinical value.
Besides mechanical forces, the mechanosensitive channel Piezo1 is activated by the small molecule Yoda1 through an unknown mechanism. Here, using molecular dynamics simulations, calcium imaging and electrophysiology, the authors identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain. |
doi_str_mv | 10.1038/s41467-019-12501-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8c1aeda44ea9466cae5d0b05d2bf2fe1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8c1aeda44ea9466cae5d0b05d2bf2fe1</doaj_id><sourcerecordid>2301445694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-ac2790ed1e431e23a25db09cc2b6372f49adbf1eba61ee1d19bbe7ed58e3a2573</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkuKxHSe5IFUVH5UqwQEOnKyxPdnNyomLna1Ufj3Opi0tB3zxaObxOx77LYrXwM6AifZ9kiBVUzHoKuA1gwqeFcecyRw0XDx_FB8VpyntWF6ig1bKl8WRgLrlLYPjAs_LkewWpyGNZR9iOW-pRDsPNzgPYSpDf8isTEg0pSHXqPw20O8A5ZKdyJfm9oClEb0vx-DJ7j2VP4NDeFW86NEnOr3bT4ofnz5-v_hSXX39fHlxflVZxdRcoeVNx8gBSQHEBfLaGdZZy40SDe9lh870QAYVEIGDzhhqyNUtLWwjTorLVdcF3OnrOIwYb3XAQR8SIW40xnmwnnRrAcmhlISdVMoi1Y4ZVjtuet4TZK0Pq9b13ozkLE1zRP9E9GllGrZ6E260ahpVc5kF3t0JxPBrT2nW45AseY8ThX3SXDCQslbdgr79B92FfZzyUy0UU9C0nGeKr5SNIaVI_cNlgOnFEHo1hM6G0AdD6GWMN4_HeDhy__0ZECuQcmnaUPzb-z-yfwBUZ8JE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300617822</pqid></control><display><type>article</type><title>A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1</title><source>Publicly Available Content Database</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Botello-Smith, Wesley M. ; Jiang, Wenjuan ; Zhang, Han ; Ozkan, Alper D. ; Lin, Yi-Chun ; Pham, Christine N. ; Lacroix, Jérôme J. ; Luo, Yun</creator><creatorcontrib>Botello-Smith, Wesley M. ; Jiang, Wenjuan ; Zhang, Han ; Ozkan, Alper D. ; Lin, Yi-Chun ; Pham, Christine N. ; Lacroix, Jérôme J. ; Luo, Yun</creatorcontrib><description>Mechanosensitive Piezo1 and Piezo2 channels transduce various forms of mechanical forces into cellular signals that play vital roles in many important biological processes in vertebrate organisms. Besides mechanical forces, Piezo1 is selectively activated by micromolar concentrations of the small molecule Yoda1 through an unknown mechanism. Here, using a combination of all-atom molecular dynamics simulations, calcium imaging and electrophysiology, we identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain, approximately 40 Å away from the central pore. Our simulations further indicate that the presence of the agonist correlates with increased tension-induced motions of the Yoda1-bound subunit. Our results suggest a model wherein Yoda1 acts as a molecular wedge, facilitating force-induced conformational changes, effectively lowering the channel’s mechanical threshold for activation. The identification of an allosteric agonist binding site in Piezo1 channels will pave the way for the rational design of future Piezo modulators with clinical value.
Besides mechanical forces, the mechanosensitive channel Piezo1 is activated by the small molecule Yoda1 through an unknown mechanism. Here, using molecular dynamics simulations, calcium imaging and electrophysiology, the authors identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-12501-1</identifier><identifier>PMID: 31582801</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 14 ; 631/154/436/2387 ; 631/57/2266 ; 631/92/269 ; 9/74 ; Activation ; Agonists ; Allosteric properties ; Binding Sites ; Biological activity ; Calcium ; Calcium imaging ; Calcium signalling ; Channels ; Computer simulation ; Electrophysiology ; HEK293 Cells ; Humanities and Social Sciences ; Humans ; Intravital Microscopy - methods ; Ion Channel Gating - drug effects ; Ion Channels - agonists ; Ion Channels - genetics ; Ion Channels - metabolism ; Ligands ; Modulators ; Molecular dynamics ; Molecular Dynamics Simulation ; multidisciplinary ; Mutation ; Optical Imaging - methods ; Patch-Clamp Techniques ; Protein Binding ; Protein Domains ; Pyrazines - pharmacology ; Science ; Science (multidisciplinary) ; Signal processing ; Thiadiazoles - pharmacology ; Vertebrates</subject><ispartof>Nature communications, 2019-10, Vol.10 (1), p.4503-10, Article 4503</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-ac2790ed1e431e23a25db09cc2b6372f49adbf1eba61ee1d19bbe7ed58e3a2573</citedby><cites>FETCH-LOGICAL-c606t-ac2790ed1e431e23a25db09cc2b6372f49adbf1eba61ee1d19bbe7ed58e3a2573</cites><orcidid>0000-0002-6360-3875 ; 0000-0001-5687-0652 ; 0000-0003-3581-754X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2300617822/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2300617822?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31582801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Botello-Smith, Wesley M.</creatorcontrib><creatorcontrib>Jiang, Wenjuan</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Ozkan, Alper D.</creatorcontrib><creatorcontrib>Lin, Yi-Chun</creatorcontrib><creatorcontrib>Pham, Christine N.</creatorcontrib><creatorcontrib>Lacroix, Jérôme J.</creatorcontrib><creatorcontrib>Luo, Yun</creatorcontrib><title>A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Mechanosensitive Piezo1 and Piezo2 channels transduce various forms of mechanical forces into cellular signals that play vital roles in many important biological processes in vertebrate organisms. Besides mechanical forces, Piezo1 is selectively activated by micromolar concentrations of the small molecule Yoda1 through an unknown mechanism. Here, using a combination of all-atom molecular dynamics simulations, calcium imaging and electrophysiology, we identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain, approximately 40 Å away from the central pore. Our simulations further indicate that the presence of the agonist correlates with increased tension-induced motions of the Yoda1-bound subunit. Our results suggest a model wherein Yoda1 acts as a molecular wedge, facilitating force-induced conformational changes, effectively lowering the channel’s mechanical threshold for activation. The identification of an allosteric agonist binding site in Piezo1 channels will pave the way for the rational design of future Piezo modulators with clinical value.
Besides mechanical forces, the mechanosensitive channel Piezo1 is activated by the small molecule Yoda1 through an unknown mechanism. Here, using molecular dynamics simulations, calcium imaging and electrophysiology, the authors identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain.</description><subject>119/118</subject><subject>14</subject><subject>631/154/436/2387</subject><subject>631/57/2266</subject><subject>631/92/269</subject><subject>9/74</subject><subject>Activation</subject><subject>Agonists</subject><subject>Allosteric properties</subject><subject>Binding Sites</subject><subject>Biological activity</subject><subject>Calcium</subject><subject>Calcium imaging</subject><subject>Calcium signalling</subject><subject>Channels</subject><subject>Computer simulation</subject><subject>Electrophysiology</subject><subject>HEK293 Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Intravital Microscopy - methods</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channels - agonists</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Ligands</subject><subject>Modulators</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Optical Imaging - methods</subject><subject>Patch-Clamp Techniques</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Pyrazines - pharmacology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal processing</subject><subject>Thiadiazoles - pharmacology</subject><subject>Vertebrates</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkuKxHSe5IFUVH5UqwQEOnKyxPdnNyomLna1Ufj3Opi0tB3zxaObxOx77LYrXwM6AifZ9kiBVUzHoKuA1gwqeFcecyRw0XDx_FB8VpyntWF6ig1bKl8WRgLrlLYPjAs_LkewWpyGNZR9iOW-pRDsPNzgPYSpDf8isTEg0pSHXqPw20O8A5ZKdyJfm9oClEb0vx-DJ7j2VP4NDeFW86NEnOr3bT4ofnz5-v_hSXX39fHlxflVZxdRcoeVNx8gBSQHEBfLaGdZZy40SDe9lh870QAYVEIGDzhhqyNUtLWwjTorLVdcF3OnrOIwYb3XAQR8SIW40xnmwnnRrAcmhlISdVMoi1Y4ZVjtuet4TZK0Pq9b13ozkLE1zRP9E9GllGrZ6E260ahpVc5kF3t0JxPBrT2nW45AseY8ThX3SXDCQslbdgr79B92FfZzyUy0UU9C0nGeKr5SNIaVI_cNlgOnFEHo1hM6G0AdD6GWMN4_HeDhy__0ZECuQcmnaUPzb-z-yfwBUZ8JE</recordid><startdate>20191003</startdate><enddate>20191003</enddate><creator>Botello-Smith, Wesley M.</creator><creator>Jiang, Wenjuan</creator><creator>Zhang, Han</creator><creator>Ozkan, Alper D.</creator><creator>Lin, Yi-Chun</creator><creator>Pham, Christine N.</creator><creator>Lacroix, Jérôme J.</creator><creator>Luo, Yun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6360-3875</orcidid><orcidid>https://orcid.org/0000-0001-5687-0652</orcidid><orcidid>https://orcid.org/0000-0003-3581-754X</orcidid></search><sort><creationdate>20191003</creationdate><title>A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1</title><author>Botello-Smith, Wesley M. ; Jiang, Wenjuan ; Zhang, Han ; Ozkan, Alper D. ; Lin, Yi-Chun ; Pham, Christine N. ; Lacroix, Jérôme J. ; Luo, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-ac2790ed1e431e23a25db09cc2b6372f49adbf1eba61ee1d19bbe7ed58e3a2573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>119/118</topic><topic>14</topic><topic>631/154/436/2387</topic><topic>631/57/2266</topic><topic>631/92/269</topic><topic>9/74</topic><topic>Activation</topic><topic>Agonists</topic><topic>Allosteric properties</topic><topic>Binding Sites</topic><topic>Biological activity</topic><topic>Calcium</topic><topic>Calcium imaging</topic><topic>Calcium signalling</topic><topic>Channels</topic><topic>Computer simulation</topic><topic>Electrophysiology</topic><topic>HEK293 Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Intravital Microscopy - methods</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channels - agonists</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Ligands</topic><topic>Modulators</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Optical Imaging - methods</topic><topic>Patch-Clamp Techniques</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Pyrazines - pharmacology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal processing</topic><topic>Thiadiazoles - pharmacology</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Botello-Smith, Wesley M.</creatorcontrib><creatorcontrib>Jiang, Wenjuan</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Ozkan, Alper D.</creatorcontrib><creatorcontrib>Lin, Yi-Chun</creatorcontrib><creatorcontrib>Pham, Christine N.</creatorcontrib><creatorcontrib>Lacroix, Jérôme J.</creatorcontrib><creatorcontrib>Luo, Yun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Botello-Smith, Wesley M.</au><au>Jiang, Wenjuan</au><au>Zhang, Han</au><au>Ozkan, Alper D.</au><au>Lin, Yi-Chun</au><au>Pham, Christine N.</au><au>Lacroix, Jérôme J.</au><au>Luo, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-10-03</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>4503</spage><epage>10</epage><pages>4503-10</pages><artnum>4503</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Mechanosensitive Piezo1 and Piezo2 channels transduce various forms of mechanical forces into cellular signals that play vital roles in many important biological processes in vertebrate organisms. Besides mechanical forces, Piezo1 is selectively activated by micromolar concentrations of the small molecule Yoda1 through an unknown mechanism. Here, using a combination of all-atom molecular dynamics simulations, calcium imaging and electrophysiology, we identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain, approximately 40 Å away from the central pore. Our simulations further indicate that the presence of the agonist correlates with increased tension-induced motions of the Yoda1-bound subunit. Our results suggest a model wherein Yoda1 acts as a molecular wedge, facilitating force-induced conformational changes, effectively lowering the channel’s mechanical threshold for activation. The identification of an allosteric agonist binding site in Piezo1 channels will pave the way for the rational design of future Piezo modulators with clinical value.
Besides mechanical forces, the mechanosensitive channel Piezo1 is activated by the small molecule Yoda1 through an unknown mechanism. Here, using molecular dynamics simulations, calcium imaging and electrophysiology, the authors identify an allosteric Yoda1 binding pocket located in the putative mechanosensory domain.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31582801</pmid><doi>10.1038/s41467-019-12501-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6360-3875</orcidid><orcidid>https://orcid.org/0000-0001-5687-0652</orcidid><orcidid>https://orcid.org/0000-0003-3581-754X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2019-10, Vol.10 (1), p.4503-10, Article 4503 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8c1aeda44ea9466cae5d0b05d2bf2fe1 |
source | Publicly Available Content Database; Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 119/118 14 631/154/436/2387 631/57/2266 631/92/269 9/74 Activation Agonists Allosteric properties Binding Sites Biological activity Calcium Calcium imaging Calcium signalling Channels Computer simulation Electrophysiology HEK293 Cells Humanities and Social Sciences Humans Intravital Microscopy - methods Ion Channel Gating - drug effects Ion Channels - agonists Ion Channels - genetics Ion Channels - metabolism Ligands Modulators Molecular dynamics Molecular Dynamics Simulation multidisciplinary Mutation Optical Imaging - methods Patch-Clamp Techniques Protein Binding Protein Domains Pyrazines - pharmacology Science Science (multidisciplinary) Signal processing Thiadiazoles - pharmacology Vertebrates |
title | A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanism%20for%20the%20activation%20of%20the%20mechanosensitive%20Piezo1%20channel%20by%20the%20small%20molecule%20Yoda1&rft.jtitle=Nature%20communications&rft.au=Botello-Smith,%20Wesley%20M.&rft.date=2019-10-03&rft.volume=10&rft.issue=1&rft.spage=4503&rft.epage=10&rft.pages=4503-10&rft.artnum=4503&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-12501-1&rft_dat=%3Cproquest_doaj_%3E2301445694%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-ac2790ed1e431e23a25db09cc2b6372f49adbf1eba61ee1d19bbe7ed58e3a2573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300617822&rft_id=info:pmid/31582801&rfr_iscdi=true |